Combination of Linear Transformations

  • #1
TheFallen018
52
0
Hello,

I'm trying to get my head around linear transformations, and there are a few things I'm not grasping too well. I'm trying to understand combinations of linear transformations, but I can't find a lot of clear information on them. As far as I can tell, any two linear transformations of the same dimensions should be able to be combined into a single transformation. Is there a clear and easy way to prove this though?

Here's an example of what I mean.

Let F and G be $\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ transformations. Define a function $H :$ $\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ by $H(u) = 2F(u)-G(u)$. Show that $H$ is also a linear transformation.

I was thinking of trying to show it using standard matrices of linear transformations, but I'm not sure if that's the best approach.

If you could point me in the right direction, that would be really helpful. Thanks heaps! :)
 

Answers and Replies

  • #2
Opalg
Gold Member
MHB
2,779
4,000
Hello,

I'm trying to get my head around linear transformations, and there are a few things I'm not grasping too well. I'm trying to understand combinations of linear transformations, but I can't find a lot of clear information on them. As far as I can tell, any two linear transformations of the same dimensions should be able to be combined into a single transformation. Is there a clear and easy way to prove this though?

Here's an example of what I mean.

Let F and G be $\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ transformations. Define a function $H :$ $\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ by $H(u) = 2F(u)-G(u)$. Show that $H$ is also a linear transformation.

I was thinking of trying to show it using standard matrices of linear transformations, but I'm not sure if that's the best approach.

If you could point me in the right direction, that would be really helpful. Thanks heaps! :)
The definition of a linear transformation is that it is a transformation that preserves addition and scalar multiplication.

So if $F : \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ is a linear transformation, that means that $F(u+v) = F(u) + F(v)$ and $F(\lambda u) = \lambda F(u)$ (for all $u,v\in\Bbb{R^n}$ and $\lambda\in\Bbb{R}$).

You have to check that if $F$ and $G$ have those properties then so does $H$.
 
  • #3
HOI
923
2
Hello,

I'm trying to get my head around linear transformations, and there are a few things I'm not grasping too well. I'm trying to understand combinations of linear transformations, but I can't find a lot of clear information on them. As far as I can tell, any two linear transformations of the same dimensions should be able to be combined into a single transformation. Is there a clear and easy way to prove this though?

Here's an example of what I mean.

Let F and G be $\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ transformations.
? Doesn't the problem say that F and G are linear transformations? If not then this is simply not true!

Define a function $H :$ $\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ by $H(u) = 2F(u)-G(u)$. Show that $H$ is also a linear transformation.

I was thinking of trying to show it using standard matrices of linear transformations, but I'm not sure if that's the best approach.

If you could point me in the right direction, that would be really helpful. Thanks heaps! :)
 

Suggested for: Combination of Linear Transformations

  • Last Post
Replies
7
Views
644
  • Last Post
Replies
2
Views
697
  • Last Post
Replies
9
Views
1K
Replies
4
Views
718
  • Last Post
Replies
6
Views
1K
  • Last Post
Replies
1
Views
950
  • Last Post
Replies
2
Views
671
Top