MHB Can a Number Have Over 2017 Divisors Within a Specific Range?

  • Thread starter Thread starter anre
  • Start date Start date
  • Tags Tags
    Natural
AI Thread Summary
The discussion revolves around proving the existence of a natural number n that has more than 2017 divisors d, constrained by the condition that the square root of n is less than or equal to d, and d is less than 1.01 times the square root of n. Participants emphasize the importance of sharing progress or initial thoughts when asking for help to facilitate more effective assistance. The initial poster is encouraged to provide their work to avoid redundant suggestions. The conversation aims to explore the mathematical properties of divisors within the specified range.
anre
Messages
3
Reaction score
0
Hello
could you help me to solve my task

$n \in \Bbb{N}$
Prove that there is n which has more than 2017 divisors d that:

$\sqrt{n} \le d < 1,01 * \sqrt{n}$

Thank you
 
Last edited:
Mathematics news on Phys.org
Hello anre and welcome to MHB! :D

We ask that our users show their progress (work thus far or thoughts on how to begin) when posting questions. This way our helpers can see where you are stuck or may be going astray and will be able to post the best help possible without potentially making a suggestion which you have already tried, which would waste your time and that of the helper.

Can you post what you have done so far?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top