MHB Can a Philologist Crack Complex Math in Plato's Music Theory?

  • Thread starter Thread starter Kobzar
  • Start date Start date
AI Thread Summary
A philologist with basic math knowledge seeks assistance on mathematical concepts in Plato's music theory while translating a related text. The discussion reveals an equation that needs rewriting and substitution, leading to a polynomial that can be solved using the quadratic formula. Errors in the original equations are identified, particularly in the numerator and denominator of a derived expression. Participants provide corrections and guidance on the mathematical process. The conversation emphasizes collaboration in understanding complex mathematical ideas within philosophical contexts.
Kobzar
Messages
11
Reaction score
0
Hello, everybody:

I am a philologist who is fond of mathematics, but who unfortunately has just an elementary high school knowledge of them. I am translating La leçon de Platon, by Dom Néroman (La Bégude de Mazenc, Arma Artis, 2002), which deals with music theory and mathematics in the works of Plato. The problem which brings me here is not about translation, but about mathematics. Please see attached document.

Any help will be welcome. Thank you very much in advance!

Best regards.

Kobzar.
 

Attachments

Mathematics news on Phys.org
Rewrite the first equation as $y=\dfrac{M-x^2}{2x}$ and then substitute into the second equation. After quite a bit of multiplying, you will get $5x^4-(2M+4N)x^2+m^2=0$. Use the quadratic formula to solve for $x^2$ and you will get the value for $x^2$ given in the statement. The value for $y^2$ is incorrect. In addition to the error in the denominator that you pointed out, there is another error in the numerator.
 
mrtwhs said:
Rewrite the first equation as $y=\dfrac{M-x^2}{2x}$ and then substitute into the second equation. After quite a bit of multiplying, you will get $5x^4-(2M+4N)x^2+m^2=0$. Use the quadratic formula to solve for $x^2$ and you will get the value for $x^2$ given in the statement. The value for $y^2$ is incorrect. In addition to the error in the denominator that you pointed out, there is another error in the numerator.
Thank you very much for your useful and quick answer!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top