Distance between the centers of two circles

  • MHB
  • Thread starter Kobzar
  • Start date
  • #1
Kobzar
11
0
Hello, everybody:

I am a philologist who is fond of mathematics, but who unfortunately has just an elementary high school knowledge of them. I am translating La leçon de Platon, by Dom Néroman (La Bégude de Mazenc, Arma Artis, 2002), which deals with music theory and mathematics in the works of Plato. The problem which brings me here is not about translation, but about mathematics. Please see attachment.

Thank you very much in advance for whatever answer, and best regards.
 

Attachments

  • Distance between centers.pdf
    43.1 KB · Views: 22

Answers and Replies

  • #2
skeeter
1,104
1
Reference the attached marked diagram.

Line segments PB and PA are tangent to each circle. As such, they form right angles $PAC$ and $PBC'$

Using Pythagoras ...

$PC^2 = R^2 + PA^2 \implies PA^2 = PC^2 - R^2$
$PC'^2 = R'^2 + PB^2 \implies PB^2 = PC'^2 - R'^2$

$PA^2 = PB^2 \implies PC^2 - R^2 = PC'^2 - R'^2$

from the last equation above ...

$R'^2 - R^2 = PC'^2 - PC^2$

using Pythagoras again ...

$R'^2 - R^2 = (PD^2+C'D^2) - (PD^2+CD^2)$

$R'^2 - R^2 = C'D^2 - CD^2$

factoring the right side ...

$R'^2 - R^2 = (C'D - CD)(C'D+CD)$

note $C'D = a - CD$ and $a = C'D + CD$

substituting ...

$R'^2 - R^2 = (a - 2CD)(a)$

$\dfrac{R'^2-R^2}{a} = a - 2CD$

$2CD = a - \dfrac{R'^2-R^2}{a}$

$2CD = \dfrac{a^2}{a} - \dfrac{R'^2-R^2}{a}$

$2CD = \dfrac{a^2 - (R'^2-R^2)}{a}$

$CD = \dfrac{a^2 - (R'^2-R^2)}{2a}$

circle_problem.jpg
 
  • #3
Opalg
Gold Member
MHB
2,779
4,000
[TIKZ]\draw [very thick] circle (2) ;
\draw [very thick] (7,0) circle (3) ;
\draw [thick] (-2,0) -- (11,0) ;
\draw [thick] (3.14,-3) -- (3.14,4) ;
\coordinate [label=right:$A$] (A) at (1.95,-0.5) ;
\coordinate [label=above:$B$] (B) at (7.5,2.95) ;
\coordinate [label=left:$P$] (P) at (3.14,3.5) ;
\coordinate [label=above:$C$] (C) at (0,0) ;
\coordinate [label=above right:$C'$] (E) at (7,0) ;
\coordinate [label=above right:$D$] (D) at (3.14,0) ;
\draw [very thick] (P) -- node[ right ]{$d$} (1.65,-1.5) ;
\draw [very thick] (P) -- node[ above ]{$d$} (8.5,2.85) ;
\draw [very thick] (C) -- node[ below ]{$R$} (A) ;
\draw [very thick] (E) -- node[ right ]{$R'$} (B) ;
\draw (C) -- (P) -- (E) ;
\draw (1.5,0.2) node {$x$} ;
\draw (5,0.2) node {$a-x$} ;
\draw (3.4,1.7) node {$h$} ;[/TIKZ]

Write $d$ for the equal distances $PA$ and $PB$, $h$ for $PD$, and $x$ for $CD$, so that $DC = a-x$.

Since $PC$ is the hypotenuse of both of the right-angled triangles $PAC$ and $PDC$, it follows that $$R^2+d^2 = x^2+h^2.$$ Similarly, it follows from the triangles $PBC'$ and $PDC'$ that $R'^2 + d^2 = (a-x)^2 + h^2.$ Subtract the first of those equations from the second, to get $$R'^2-R^2 = (a-x)^2-x^2 = a^2 -2ax.$$ Therefore $R'^2 - R^2 = a^2-2ax$, so that $x = \dfrac{a^2 - (R'^2 - R^2)}{2a}.$

Notice that $x$ turns out to depend only on $R$, $R'$ and $a$, and is independent of $d$ and $h$. This shows that the locus of $P$ is indeed the vertical line through $D$.

Edit: having posted that, I see that skeeter got there first!
 
  • #4
skeeter
1,104
1
Edit: having posted that, I see that @skeeter got there first!

very nice diagram ... TIKZ?
 
  • #5
Opalg
Gold Member
MHB
2,779
4,000
very nice diagram ... TIKZ?
Yes, but don't copy my Tikz coding – it's full of clumsy kludges.
 
  • #6
Kobzar
11
0
[TIKZ]\draw [very thick] circle (2) ;
\draw [very thick] (7,0) circle (3) ;
\draw [thick] (-2,0) -- (11,0) ;
\draw [thick] (3.14,-3) -- (3.14,4) ;
\coordinate [label=right:$A$] (A) at (1.95,-0.5) ;
\coordinate [label=above:$B$] (B) at (7.5,2.95) ;
\coordinate [label=left:$P$] (P) at (3.14,3.5) ;
\coordinate [label=above:$C$] (C) at (0,0) ;
\coordinate [label=above right:$C'$] (E) at (7,0) ;
\coordinate [label=above right:$D$] (D) at (3.14,0) ;
\draw [very thick] (P) -- node[ right ]{$d$} (1.65,-1.5) ;
\draw [very thick] (P) -- node[ above ]{$d$} (8.5,2.85) ;
\draw [very thick] (C) -- node[ below ]{$R$} (A) ;
\draw [very thick] (E) -- node[ right ]{$R'$} (B) ;
\draw (C) -- (P) -- (E) ;
\draw (1.5,0.2) node {$x$} ;
\draw (5,0.2) node {$a-x$} ;
\draw (3.4,1.7) node {$h$} ;[/TIKZ]

Write $d$ for the equal distances $PA$ and $PB$, $h$ for $PD$, and $x$ for $CD$, so that $DC = a-x$.

Since $PC$ is the hypotenuse of both of the right-angled triangles $PAC$ and $PDC$, it follows that $$R^2+d^2 = x^2+h^2.$$ Similarly, it follows from the triangles $PBC'$ and $PDC'$ that $R'^2 + d^2 = (a-x)^2 + h^2.$ Subtract the first of those equations from the second, to get $$R'^2-R^2 = (a-x)^2-x^2 = a^2 -2ax.$$ Therefore $R'^2 - R^2 = a^2-2ax$, so that $x = \dfrac{a^2 - (R'^2 - R^2)}{2a}.$

Notice that $x$ turns out to depend only on $R$, $R'$ and $a$, and is independent of $d$ and $h$. This shows that the locus of $P$ is indeed the vertical line through $D$.

Edit: having posted that, I see that skeeter got there first!
Thank you very much!
 
  • #7
I like Serena
Homework Helper
MHB
16,350
256
Yes, but don't copy my Tikz coding – it's full of clumsy kludges.
I usually look at the source of Opalg's pictures to help me get rid of my own clumsy kludges. ;)
 
  • #8
Kobzar
11
0
Reference the attached marked diagram.

Line segments PB and PA are tangent to each circle. As such, they form right angles $PAC$ and $PBC'$

Using Pythagoras ...

$PC^2 = R^2 + PA^2 \implies PA^2 = PC^2 - R^2$
$PC'^2 = R'^2 + PB^2 \implies PB^2 = PC'^2 - R'^2$

$PA^2 = PB^2 \implies PC^2 - R^2 = PC'^2 - R'^2$

from the last equation above ...

$R'^2 - R^2 = PC'^2 - PC^2$

using Pythagoras again ...

$R'^2 - R^2 = (PD^2+C'D^2) - (PD^2+CD^2)$

$R'^2 - R^2 = C'D^2 - CD^2$

factoring the right side ...

$R'^2 - R^2 = (C'D - CD)(C'D+CD)$

note $C'D = a - CD$ and $a = C'D + CD$

substituting ...

$R'^2 - R^2 = (a - 2CD)(a)$

$\dfrac{R'^2-R^2}{a} = a - 2CD$

$2CD = a - \dfrac{R'^2-R^2}{a}$

$2CD = \dfrac{a^2}{a} - \dfrac{R'^2-R^2}{a}$

$2CD = \dfrac{a^2 - (R'^2-R^2)}{a}$

$CD = \dfrac{a^2 - (R'^2-R^2)}{2a}$

View attachment 11019
Thank you very much!
 
  • #9
Opalg
Gold Member
MHB
2,779
4,000
I usually look at the source of Opalg's pictures to help me get rid of my own clumsy kludges. ;)
You're too modest, Klaas – you're definitely the Tikz expert around here.
 
  • #10
I like Serena
Homework Helper
MHB
16,350
256
You're too modest, Klaas – you're definitely the Tikz expert around here.
Not sure about that, but at least I'm able to do something about it if for some reason TikZ does not work as expected.
 

Suggested for: Distance between the centers of two circles

Replies
2
Views
458
Replies
9
Views
643
  • Last Post
Replies
1
Views
562
  • Last Post
Replies
8
Views
926
Replies
2
Views
725
  • Last Post
Replies
3
Views
545
  • Last Post
Replies
19
Views
560
Replies
7
Views
595
  • Last Post
Replies
2
Views
1K
Top