Cthugha
Science Advisor
- 2,099
- 580
kaonyx said:It is not a popular misconception, it is a fact. The Poisson distribution simply means that photons arrive at purely random times. They are detected singly because they are just that, single photons.
This is pure nonsense. If you claim to have single photons you need to demonstrate antibunching. The Poisson distribution means that detection events are distributed statistically independent of each other. However, whether these belong to just a single field originating from a single emitter (single photon) or from many fields originating from different emitters possibly including contributions from more than one field (coherent or thermal light for example) cannot be distinguished just by knowing that "single clicks" were the origin of the detection events. Do you have any peer-reviewed publication that shares your opinion that even in Poisson distributed light there are always single photons? Kimble et al. say otherwise (Phys. Rev. Lett. 39, 691–695 (1977)). Also, showing antibunching is THE tool to identify single photon sources today, see e.g. Science 290, 2282-2285 (2000) by Peter Michler et. al.
kaonyx said:The randomness is in the arrival times between successive photons. The physical meaning of this randomness is that the electric field always contains some uncertainty in its value. You can modify this distribution of arrival times by quantum mechanical technology, such as non-linear optical systems that produce phase effects such as quadrature squeezing. What that achieves is that either the times between photon arrivals are a bit closer together than you expect classically, or conversely they can be a bit less closer together - commonly known as bunching or anti-bunching and is quantum mechanical, not classical.
Sure, but you can have each of these for any amount of intensity. Only antibunching corresponds to single photons.
kaonyx said:Photons tend to bunch slightly anyway
Thermal light tends to bunch, coherent light does not. The emission from single photon sources of course also does not bunch.
kaonyx said:Photon number is simply a conjugate property of the phase, these things are how we describe the wave as a quantum mechanical wave function, so none of this changes the fact that these are photons, pure and simple, quanta of energy with a characteristic frequency, or if you prefer - colour.
That basically means that you have the opinion that Glauber's theory of coherence is not necessary and nonsense.
kaonyx said:So yes you can reduce the intensity down to a single photon (a gedankenexperiment) and you will detect a red photon and then a blue photon etc coming out of your prism with plenty of random time lag between them to convince yourself that there are no white photons. Case closed.
You can reduce it to a single photon detection per time unit ON AVERAGE. Still, most of the work of Mandel and part of the Nobel prize winning work of Glauber was devoted to showing that you need a hierarchy of correlation functions to describe a light field most precisely and that you need at least second order correlations to identify single photons.