Can Absolute Value Solve the Problem of Convergence for Inverse Functions?

Click For Summary
SUMMARY

The discussion centers on proving that if \( y_0 \neq 0 \) and \( |y - y_0| < \min\left(\frac{|y_0|}{2}, \frac{\varepsilon |y_0|^2}{2}\right) \), then \( |y| \geq \frac{|y_0|}{2} \) and \( \left|\frac{1}{y} - \frac{1}{y_0}\right| < \varepsilon \). The proof involves manipulating the expression \( \left|\frac{1}{y} - \frac{1}{y_0}\right| \) to relate it to \( |y - y_0| \). The triangle inequality is utilized to establish that \( |y| \) remains bounded away from zero, ensuring the validity of the inequalities.

PREREQUISITES
  • Understanding of limits and continuity in calculus
  • Familiarity with the triangle inequality
  • Basic knowledge of inverse functions
  • Proficiency in manipulating absolute values and inequalities
NEXT STEPS
  • Study the properties of inverse functions in calculus
  • Learn about the triangle inequality and its applications in proofs
  • Explore convergence criteria for sequences and functions
  • Investigate the implications of limits in the context of absolute values
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in the convergence of functions and the behavior of inverse functions.

Julio1
Messages
66
Reaction score
0
Show that if $y_0\ne 0$ and $|y-y_0|<\min\left(\dfrac{|y_0|}{2},\dfrac{\varepsilon|y_0|^2}{2}\right)$, then $y_0\ne 0$ and $\left|\dfrac{1}{y}-\dfrac{1}{y_0}\right|<\varepsilon.$
Hello !, in this case what is the minimum? For example, $\min\left(\dfrac{|y_0|}{2},\dfrac{\varepsilon|y_0|^2}{2}\right)=\dfrac{|y_0|}{2}$?
 
Physics news on Phys.org
Julio said:
Show that if $y_0\ne 0$ and $|y-y_0|<\min\left(\dfrac{|y_0|}{2},\dfrac{\varepsilon|y_0|^2}{2}\right)$, then $y_0\ne 0$ and $\left|\dfrac{1}{y}-\dfrac{1}{y_0}\right|<\varepsilon.$
Hello !, in this case what is the minimum? For example, $\min\left(\dfrac{|y_0|}{2},\dfrac{\varepsilon|y_0|^2}{2}\right)=\dfrac{|y_0|}{2}$?

We don't know what is the minimum, that is the point. But we know that one of them is, so the other one will be no less than this value, and thus won't affect any of the inequalities.

If $\displaystyle \begin{align*} \left| y - y_0 \right| < \frac{ \left| y_0 \right| }{2} \end{align*}$, and this is the minimum, then it must also be less than $\displaystyle \begin{align*} \frac{ \epsilon \left| y_0 \right| ^2 }{2} \end{align*}$ and vice versa.
 
Julio said:
Show that if $y_0\ne 0$ and $|y-y_0|<\min\left(\dfrac{|y_0|}{2},\dfrac{\varepsilon|y_0|^2}{2}\right)$, then $y_0\ne 0$ and $\left|\dfrac{1}{y}-\dfrac{1}{y_0}\right|<\varepsilon.$
Hello !, in this case what is the minimum? For example, $\min\left(\dfrac{|y_0|}{2},\dfrac{\varepsilon|y_0|^2}{2}\right)=\dfrac{|y_0|}{2}$?

Hi Julio,

To prove the result, assume the hypothesis and manipulate the expression $|\frac1{y} - \frac1{y_0}|$ to a get a term involving $|y - y_0|$ as follows:

$(*) \displaystyle \left|\frac1{y} - \frac1{y_0}\right| = \left|\frac{y_0 - y}{yy_0}\right| = \frac{|y - y_0|}{|yy_0|}$.

These steps will now be justified. Since

$\displaystyle |y - y_0| < \min\left(\frac{|y_0|}{2}, \frac{\varepsilon |y_0|^2}{2}\right)$,

in particular

$\displaystyle |y - y_0| < \frac{|y_0|}{2}$.

This inequality implies $y \neq 0$. Otherwise, $|y_0| < \frac{|y_0|}{2}$, which is contradiction. Thus $yy_0 \neq 0$ and the equations in $(*)$ are valid. Again by assumption,

$\displaystyle |y - y_0| < \frac{\varepsilon |y_0|^2}{2}$.

Further, by the triangle inequality, $|y - y_0| < \frac{|y_0|}{2}$ implies $|y| \ge |y_0| - |y - y_0| > \frac{|y_0|}{2}$. Hence

$\displaystyle \frac{|y - y_0|}{|yy_0|} < \frac{\varepsilon |y_0|^2}{2} \frac{2}{|y_0|^2} = \varepsilon$.
 
Euge said:
Hi Julio,

To prove the result, assume the hypothesis and manipulate the expression $|\frac1{y} - \frac1{y_0}|$ to a get a term involving $|y - y_0|$ as follows:

$(*) \displaystyle \left|\frac1{y} - \frac1{y_0}\right| = \left|\frac{y_0 - y}{yy_0}\right| = \frac{|y - y_0|}{|yy_0|}$.

These steps will now be justified. Since

$\displaystyle |y - y_0| < \min\left(\frac{|y_0|}{2}, \frac{\varepsilon |y_0|^2}{2}\right)$,

in particular

$\displaystyle |y - y_0| < \frac{|y_0|}{2}$.

This inequality implies $y \neq 0$. Otherwise, $|y_0| < \frac{|y_0|}{2}$, which is contradiction. Thus $yy_0 \neq 0$ and the equations in $(*)$ are valid. Again by assumption,

$\displaystyle |y - y_0| < \frac{\varepsilon |y_0|^2}{2}$.

Further, by the triangle inequality, $|y - y_0| < \frac{|y_0|}{2}$ implies $|y| \ge |y_0| - |y - y_0| > \frac{|y_0|}{2}$. Hence

$\displaystyle \frac{|y - y_0|}{|yy_0|} < \frac{\varepsilon |y_0|^2}{2} \frac{2}{|y_0|^2} = \varepsilon$.

Thanks :)

But how it's conclude that $|y|\ge |y_0|-|y-y_0|>\dfrac{|y_0|}{2}$? Why $|y|\ge \dfrac{|y_0|}{2}$?
 
Julio said:
Thanks :)

But how it's conclude that $|y|\ge |y_0|-|y-y_0|>\dfrac{|y_0|}{2}$? Why $|y|\ge \dfrac{|y_0|}{2}$?

By the triangle inequality,

$\displaystyle |y_0| = |y + (y_0 - y)| \le |y| + |y_0 - y| = |y| + |y - y_0|$.

Hence, $|y| > |y_0| - |y - y_0|$. Since $|y - y_0| < \frac{|y_0|}{2}$,

$|y_0| - |y - y_0| \ge |y_0| - \frac{|y_0|}{2} = \frac{|y_0|}{2}$.

Therefore, $|y| > \frac{|y_0|}{2}$.
 
Euge said:
By the triangle inequality,

$\displaystyle |y_0| = |y + (y_0 - y)| \le |y| + |y_0 - y| = |y| + |y - y_0|$.

Hence, $|y| > |y_0| - |y - y_0|$. Since $|y - y_0| < \frac{|y_0|}{2}$,

$|y_0| - |y - y_0| \ge |y_0| - \frac{|y_0|}{2} = \frac{|y_0|}{2}$.

Therefore, $|y| > \frac{|y_0|}{2}$.

Thanks :) Now its clear the problem. The condition $|y-y_0|<\dfrac{|y_0|}{2}$ is for see that $y\ne 0.$ And the condition $|y-y_0|<\dfrac{\varepsilon|y_0|^2}{2}$ is for show that $\left|\dfrac{1}{y}-\dfrac{1}{y_0}\right|<\varepsilon.$

Bye and Thanks !
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
Replies
2
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 0 ·
Replies
0
Views
512
  • · Replies 9 ·
Replies
9
Views
2K
Replies
8
Views
3K