MHB Can Absolute Value Solve the Problem of Convergence for Inverse Functions?

Julio1
Messages
66
Reaction score
0
Show that if $y_0\ne 0$ and $|y-y_0|<\min\left(\dfrac{|y_0|}{2},\dfrac{\varepsilon|y_0|^2}{2}\right)$, then $y_0\ne 0$ and $\left|\dfrac{1}{y}-\dfrac{1}{y_0}\right|<\varepsilon.$
Hello !, in this case what is the minimum? For example, $\min\left(\dfrac{|y_0|}{2},\dfrac{\varepsilon|y_0|^2}{2}\right)=\dfrac{|y_0|}{2}$?
 
Physics news on Phys.org
Julio said:
Show that if $y_0\ne 0$ and $|y-y_0|<\min\left(\dfrac{|y_0|}{2},\dfrac{\varepsilon|y_0|^2}{2}\right)$, then $y_0\ne 0$ and $\left|\dfrac{1}{y}-\dfrac{1}{y_0}\right|<\varepsilon.$
Hello !, in this case what is the minimum? For example, $\min\left(\dfrac{|y_0|}{2},\dfrac{\varepsilon|y_0|^2}{2}\right)=\dfrac{|y_0|}{2}$?

We don't know what is the minimum, that is the point. But we know that one of them is, so the other one will be no less than this value, and thus won't affect any of the inequalities.

If $\displaystyle \begin{align*} \left| y - y_0 \right| < \frac{ \left| y_0 \right| }{2} \end{align*}$, and this is the minimum, then it must also be less than $\displaystyle \begin{align*} \frac{ \epsilon \left| y_0 \right| ^2 }{2} \end{align*}$ and vice versa.
 
Julio said:
Show that if $y_0\ne 0$ and $|y-y_0|<\min\left(\dfrac{|y_0|}{2},\dfrac{\varepsilon|y_0|^2}{2}\right)$, then $y_0\ne 0$ and $\left|\dfrac{1}{y}-\dfrac{1}{y_0}\right|<\varepsilon.$
Hello !, in this case what is the minimum? For example, $\min\left(\dfrac{|y_0|}{2},\dfrac{\varepsilon|y_0|^2}{2}\right)=\dfrac{|y_0|}{2}$?

Hi Julio,

To prove the result, assume the hypothesis and manipulate the expression $|\frac1{y} - \frac1{y_0}|$ to a get a term involving $|y - y_0|$ as follows:

$(*) \displaystyle \left|\frac1{y} - \frac1{y_0}\right| = \left|\frac{y_0 - y}{yy_0}\right| = \frac{|y - y_0|}{|yy_0|}$.

These steps will now be justified. Since

$\displaystyle |y - y_0| < \min\left(\frac{|y_0|}{2}, \frac{\varepsilon |y_0|^2}{2}\right)$,

in particular

$\displaystyle |y - y_0| < \frac{|y_0|}{2}$.

This inequality implies $y \neq 0$. Otherwise, $|y_0| < \frac{|y_0|}{2}$, which is contradiction. Thus $yy_0 \neq 0$ and the equations in $(*)$ are valid. Again by assumption,

$\displaystyle |y - y_0| < \frac{\varepsilon |y_0|^2}{2}$.

Further, by the triangle inequality, $|y - y_0| < \frac{|y_0|}{2}$ implies $|y| \ge |y_0| - |y - y_0| > \frac{|y_0|}{2}$. Hence

$\displaystyle \frac{|y - y_0|}{|yy_0|} < \frac{\varepsilon |y_0|^2}{2} \frac{2}{|y_0|^2} = \varepsilon$.
 
Euge said:
Hi Julio,

To prove the result, assume the hypothesis and manipulate the expression $|\frac1{y} - \frac1{y_0}|$ to a get a term involving $|y - y_0|$ as follows:

$(*) \displaystyle \left|\frac1{y} - \frac1{y_0}\right| = \left|\frac{y_0 - y}{yy_0}\right| = \frac{|y - y_0|}{|yy_0|}$.

These steps will now be justified. Since

$\displaystyle |y - y_0| < \min\left(\frac{|y_0|}{2}, \frac{\varepsilon |y_0|^2}{2}\right)$,

in particular

$\displaystyle |y - y_0| < \frac{|y_0|}{2}$.

This inequality implies $y \neq 0$. Otherwise, $|y_0| < \frac{|y_0|}{2}$, which is contradiction. Thus $yy_0 \neq 0$ and the equations in $(*)$ are valid. Again by assumption,

$\displaystyle |y - y_0| < \frac{\varepsilon |y_0|^2}{2}$.

Further, by the triangle inequality, $|y - y_0| < \frac{|y_0|}{2}$ implies $|y| \ge |y_0| - |y - y_0| > \frac{|y_0|}{2}$. Hence

$\displaystyle \frac{|y - y_0|}{|yy_0|} < \frac{\varepsilon |y_0|^2}{2} \frac{2}{|y_0|^2} = \varepsilon$.

Thanks :)

But how it's conclude that $|y|\ge |y_0|-|y-y_0|>\dfrac{|y_0|}{2}$? Why $|y|\ge \dfrac{|y_0|}{2}$?
 
Julio said:
Thanks :)

But how it's conclude that $|y|\ge |y_0|-|y-y_0|>\dfrac{|y_0|}{2}$? Why $|y|\ge \dfrac{|y_0|}{2}$?

By the triangle inequality,

$\displaystyle |y_0| = |y + (y_0 - y)| \le |y| + |y_0 - y| = |y| + |y - y_0|$.

Hence, $|y| > |y_0| - |y - y_0|$. Since $|y - y_0| < \frac{|y_0|}{2}$,

$|y_0| - |y - y_0| \ge |y_0| - \frac{|y_0|}{2} = \frac{|y_0|}{2}$.

Therefore, $|y| > \frac{|y_0|}{2}$.
 
Euge said:
By the triangle inequality,

$\displaystyle |y_0| = |y + (y_0 - y)| \le |y| + |y_0 - y| = |y| + |y - y_0|$.

Hence, $|y| > |y_0| - |y - y_0|$. Since $|y - y_0| < \frac{|y_0|}{2}$,

$|y_0| - |y - y_0| \ge |y_0| - \frac{|y_0|}{2} = \frac{|y_0|}{2}$.

Therefore, $|y| > \frac{|y_0|}{2}$.

Thanks :) Now its clear the problem. The condition $|y-y_0|<\dfrac{|y_0|}{2}$ is for see that $y\ne 0.$ And the condition $|y-y_0|<\dfrac{\varepsilon|y_0|^2}{2}$ is for show that $\left|\dfrac{1}{y}-\dfrac{1}{y_0}\right|<\varepsilon.$

Bye and Thanks !
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
Replies
2
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K