I Can an enclosure surrounding a Tx antenna act as a receiving antenna?

Click For Summary
Wiring a metal cuboid as an antenna poses significant challenges due to its inability to generate differential currents and voltages necessary for effective transmission. Unlike dipole antennas, a cuboid lacks the required structure to function properly without modifications, such as introducing a slot to allow electromagnetic fields to be detected. An ideal enclosure would reflect radiated fields and present a pure reactance to the transmitter, preventing power delivery. Real-world applications must consider imperfections, like leakage, to achieve functional antenna performance. Understanding these limitations is crucial for designing effective antenna systems.
genekuli
Messages
68
Reaction score
4
TL;DR
If I put a metal enclosure, eg. cuboid, around a Tx antenna, can the metal enclosure, since it is completely surrounding the antenna, act as a receiver (a receiving antenna) even if it is not of any specific dimension relating to the frequency of the TX antenna radiation within it?
of course it would all have to be wired up correctly
 
Physics news on Phys.org
genekuli said:
of course it would all have to be wired up correctly
That's the key point, I believe. How are you going to wire up a metal cuboid to act as an antenna? An antenna develops a receive voltage at its output terminals as a result of the EM radiation generating differential currents and hence differential voltages. A cuboid doesn't have 2 halves like a dipole, and if you try to use it as a monopole with respect to a ground plane, I don't think the Tx antenna inside it will generate any differential currents or voltages with respect to the ground plane.

Do you have a particular application in mind? If you describe the application, we may be able to suggest some antenna geometries that could work. Or is this just a question that came up as you were learning about EM and antennas?
 
  • Like
Likes davenn and genekuli
For the 'enclosure' to do other than just reflect the radiated fields, it needs to have a break in it (a slot, for instance) so that an EMF can be detected across it.
So if your enclosure is 'ideal' (silver plated and welded all around) then the transmitting antenna will present to the transmitter as a pure reactance with no resistance. It would give most transmitters a headache as it could deliver no power.

This is one of those irrisistable force meets an immovable object type questions. In real life, the setup can't exist so you'd have to allow some imperfection, like leakage through the enclosure. Once you do that, you can calculate some sort of a real answer.
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. I am in no way trolling. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. Yes, I'm questioning the most elementary physics question we're given in this world. The classic elevator in motion question: A person is standing on a scale in an elevator that is in constant motion...