Can anyone please review/verify/check this number theory proof?

Click For Summary
The discussion revolves around verifying a number theory proof that states if gcd(a, b) = 1, then gcd(a+b, ab) = 1. The initial proof contained a contradiction regarding the assumption of gcd(a+b, ab) not equaling 1. Participants clarified that the proof should start by assuming gcd(a+b, ab) ≠ 1 and discussed the placement of the phrase "without loss of generality." After revisions, the proof was confirmed as correct, with participants appreciating the clarity and structure of the final version. The conversation emphasized the importance of precise mathematical language and notation in proofs.
Math100
Messages
816
Reaction score
229
Homework Statement
Prove that if gcd(a, b)=1, then gcd(a+b, ab)=1.
Relevant Equations
None.
Proof: Suppose for the sake of contradiction that gcd(a, b) \neq 1.
Then there exists a prime number k that divides both a+b and ab.
Note that k divides either a or b.
Since k divides a+b,
it follows that k divides b.
Thus, this is a contradiction because a and b are relatively prime.
Therefore, if gcd(a, b)=1, then gcd(a+b, ab)=1.
 
  • Like
Likes fresh_42
Physics news on Phys.org
Math100 said:
Homework Statement:: Prove that if gcd(a, b)=1, then gcd(a+b, ab)=1.
Relevant Equations:: None.

Suppose for the sake of contradiction that gcd(a, b)\neq1.
Did you mean ##\gcd(a+b, ab) \neq 1##?

Math100 said:
Homework Statement:: Prove that if gcd(a, b)=1, then gcd(a+b, ab)=1.
Relevant Equations:: None.

Note that k divides either a or b.
Since k divides a+b,
it follows that k divides b.
It looks like, WLOG, we assumed ##k## divides ##a##.

Everything else looks good to me.
 
  • Like
Likes Math100
fishturtle1 said:
Did you mean ##\gcd(a+b, ab) \neq 1##?It looks like, WLOG, we assumed ##k## divides ##a##.

Everything else looks good to me.
Yes, it was meant as 'does not equal' sign from latex.
 
Math100 said:
Yes, it was meant as 'does not equal' sign from latex.
I meant that in the first line in OP, it reads "Suppose that for sake of contradiction that ##\gcd(a, b) \neq 1##." But in the proof, you are using the assumption that ##\gcd(a+b, ab) \neq 1##.
 
  • Like
Likes Math100
But where should I place the sentence of "Without the loss of generality..."?
 
Math100 said:
But where should I place the sentence of "Without the loss of generality..."?
Note that k divides a or b. Without loss of generality, assume k divides a.
 
  • Like
Likes Math100
Oh, I see what you meant. The first sentence in the proof should be: Suppose for the sake of contradiction that gcd(a+b, ab) \neq 1. Because for using proof of contradiction, it's (P is true, Q is false), am I right?
 
  • Like
Likes fishturtle1
Math100 said:
Oh, I see what you meant. The first sentence in the proof should be: Suppose for the sake of contradiction that gcd(a+b, ab) \neq 1. Because for using proof of contradiction, it's (P is true, Q is false), am I right?
Yes, you are correct!
 
  • Like
Likes Math100
Below is my revised proof for this problem:

Suppose for the sake of contradiction that gcd(a+b, ab) \neq 1.
Then there exists a prime number k that divides both a+b and ab.
Note that k divides a or b.
Without loss of generality,
we assume that k divides a.
Since k divides a+b,
it follows that k divides b.
Thus, this is a contradiction because a and b are relatively prime.
Therefore, if gcd(a, b)=1, then gcd(a+b, ab)=1.

QED
 
  • Like
Likes fishturtle1
  • #10
Can anyone please review/verify/check my revised proof above?
 
  • #11
@fishturtle1 , I think my proof is perfect now, given the fact that you upvoted my revised proof. Thank you for the help on this problem.
 
  • #12
This looks good to me. Note if you put two # signs on each side of your math formulas, it will render as tex so \neq becomes ##\neq## (try quoting other people's posts to see what it looks like if you still aren't sure)
 
  • Like
Likes Math100
  • #13
Office_Shredder said:
This looks good to me. Note if you put two # signs on each side of your math formulas, it will render as tex so \neq becomes ##\neq## (try quoting other people's posts to see what it looks like if you still aren't sure)
Okay, thank you.