Can anyone please review/verify/check this number theory proof?

Click For Summary
SUMMARY

The forum discussion centers on the proof that if gcd(a, b) = 1, then gcd(a+b, ab) = 1. The proof was initially flawed due to a misstatement regarding the assumption of gcd(a+b, ab) ≠ 1 instead of gcd(a, b) ≠ 1. After clarification, the revised proof correctly assumes gcd(a+b, ab) ≠ 1 and uses a contradiction approach involving a prime number k that divides both a+b and ab. The conclusion confirms that if a and b are relatively prime, then the gcd of their sum and product is also 1.

PREREQUISITES
  • Understanding of number theory concepts, specifically gcd (greatest common divisor).
  • Familiarity with proof techniques, particularly proof by contradiction.
  • Basic knowledge of prime numbers and their properties.
  • Experience with mathematical notation, including LaTeX for rendering equations.
NEXT STEPS
  • Study advanced number theory, focusing on properties of gcd and lcm (least common multiple).
  • Learn more about proof techniques, especially proof by contradiction and direct proof.
  • Explore the implications of prime factorization in number theory.
  • Practice writing and formatting mathematical proofs using LaTeX.
USEFUL FOR

Students of mathematics, particularly those studying number theory, educators teaching proof techniques, and anyone interested in enhancing their mathematical reasoning skills.

Math100
Messages
817
Reaction score
230
Homework Statement
Prove that if gcd(a, b)=1, then gcd(a+b, ab)=1.
Relevant Equations
None.
Proof: Suppose for the sake of contradiction that gcd(a, b) \neq 1.
Then there exists a prime number k that divides both a+b and ab.
Note that k divides either a or b.
Since k divides a+b,
it follows that k divides b.
Thus, this is a contradiction because a and b are relatively prime.
Therefore, if gcd(a, b)=1, then gcd(a+b, ab)=1.
 
  • Like
Likes   Reactions: fresh_42
Physics news on Phys.org
Math100 said:
Homework Statement:: Prove that if gcd(a, b)=1, then gcd(a+b, ab)=1.
Relevant Equations:: None.

Suppose for the sake of contradiction that gcd(a, b)\neq1.
Did you mean ##\gcd(a+b, ab) \neq 1##?

Math100 said:
Homework Statement:: Prove that if gcd(a, b)=1, then gcd(a+b, ab)=1.
Relevant Equations:: None.

Note that k divides either a or b.
Since k divides a+b,
it follows that k divides b.
It looks like, WLOG, we assumed ##k## divides ##a##.

Everything else looks good to me.
 
  • Like
Likes   Reactions: Math100
fishturtle1 said:
Did you mean ##\gcd(a+b, ab) \neq 1##?It looks like, WLOG, we assumed ##k## divides ##a##.

Everything else looks good to me.
Yes, it was meant as 'does not equal' sign from latex.
 
Math100 said:
Yes, it was meant as 'does not equal' sign from latex.
I meant that in the first line in OP, it reads "Suppose that for sake of contradiction that ##\gcd(a, b) \neq 1##." But in the proof, you are using the assumption that ##\gcd(a+b, ab) \neq 1##.
 
  • Like
Likes   Reactions: Math100
But where should I place the sentence of "Without the loss of generality..."?
 
Math100 said:
But where should I place the sentence of "Without the loss of generality..."?
Note that k divides a or b. Without loss of generality, assume k divides a.
 
  • Like
Likes   Reactions: Math100
Oh, I see what you meant. The first sentence in the proof should be: Suppose for the sake of contradiction that gcd(a+b, ab) \neq 1. Because for using proof of contradiction, it's (P is true, Q is false), am I right?
 
  • Like
Likes   Reactions: fishturtle1
Math100 said:
Oh, I see what you meant. The first sentence in the proof should be: Suppose for the sake of contradiction that gcd(a+b, ab) \neq 1. Because for using proof of contradiction, it's (P is true, Q is false), am I right?
Yes, you are correct!
 
  • Like
Likes   Reactions: Math100
Below is my revised proof for this problem:

Suppose for the sake of contradiction that gcd(a+b, ab) \neq 1.
Then there exists a prime number k that divides both a+b and ab.
Note that k divides a or b.
Without loss of generality,
we assume that k divides a.
Since k divides a+b,
it follows that k divides b.
Thus, this is a contradiction because a and b are relatively prime.
Therefore, if gcd(a, b)=1, then gcd(a+b, ab)=1.

QED
 
  • Like
Likes   Reactions: fishturtle1
  • #10
Can anyone please review/verify/check my revised proof above?
 
  • #11
@fishturtle1 , I think my proof is perfect now, given the fact that you upvoted my revised proof. Thank you for the help on this problem.
 
  • #12
This looks good to me. Note if you put two # signs on each side of your math formulas, it will render as tex so \neq becomes ##\neq## (try quoting other people's posts to see what it looks like if you still aren't sure)
 
  • Like
Likes   Reactions: Math100
  • #13
Office_Shredder said:
This looks good to me. Note if you put two # signs on each side of your math formulas, it will render as tex so \neq becomes ##\neq## (try quoting other people's posts to see what it looks like if you still aren't sure)
Okay, thank you.
 

Similar threads

Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
Replies
5
Views
2K
Replies
7
Views
3K
Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K