MHB Can differentiation under the integral sign simplify complicated integrals?

  • Thread starter Thread starter seonguvai
  • Start date Start date
Click For Summary
Differentiation under the integral sign can simplify complex integrals, as demonstrated by the integral of the difference of two exponential functions. The specific integral evaluated shows that ∫[0,∞] (e^(-ax) - e^(-bx))/x dx equals ln(b) - ln(a). This technique is effective for solving various complicated improper integrals, potentially allowing for simpler expressions. The discussion encourages exploring further applications of this method in advanced integration techniques. Overall, differentiation under the integral sign is a valuable tool in integral calculus.
seonguvai
Messages
1
Reaction score
0
I happened to notice that if you apply differentiation under the integral sign, then [FONT=MathJax_Size2]∫[FONT=MathJax_Main]∞[FONT=MathJax_Main]0[FONT=MathJax_Math]e[FONT=MathJax_Main]−[FONT=MathJax_Math]a[FONT=MathJax_Math]x[FONT=MathJax_Main]−[FONT=MathJax_Math]e[FONT=MathJax_Main]−[FONT=MathJax_Math]b[FONT=MathJax_Math]x[FONT=MathJax_Math]x[FONT=MathJax_Math]d[FONT=MathJax_Math]x[FONT=MathJax_Main]=[FONT=MathJax_Main]ln[FONT=MathJax_Math]b[FONT=MathJax_Main]−[FONT=MathJax_Main]ln[FONT=MathJax_Math]a[FONT=MathJax_Main]=[FONT=MathJax_Size2]∫[FONT=MathJax_Math]b[FONT=MathJax_Math]a[FONT=MathJax_Main]1[FONT=MathJax_Math]x[FONT=MathJax_Math]d[FONT=MathJax_Math]x
Is this correct? If so is it possible to write other complicated improper integrals as simply as this?
 
Physics news on Phys.org
I think what you wrote is

$$\int^\infty_0 \frac{e^{-ax}-e^{-bx}}{x}\,dx = \ln(b)-\ln(a)$$

differentiation under the integral sign can be used to solve many complicated integrals.

Take a look at my http://mathhelpboards.com/calculus-10/advanced-integration-techniques-3233.html.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
12
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K