A Can Equilibrium State Determine Complex Potential?

AI Thread Summary
The discussion centers on the relationship between an observable C and a complex potential B, expressed as C = B̅B, with C evaluated at an equilibrium reference state C₀. The original poster questions whether they can infer any conclusions about B or its conjugate B̅ at this equilibrium state. Participants note issues with LaTeX formatting, suggesting that proper syntax is crucial for clarity. The conversation highlights the challenge of deriving information about B from the known value of C at equilibrium. Ultimately, the inability to determine B or B̅ from C at the equilibrium state remains unresolved.
binbagsss
Messages
1,291
Reaction score
12
I have an observable denoted by C, related to a complex potential B by :

## C= \bar{B}B ,##

where ##B## is a complex potential. I know that ## \left. C \right|_0 =C_0 ##, a known constant, where the evaluation at ##_0## denotes an equilibrium \ reference state. From this, I can not make any conclusions on ## \left. B \right|_0##, or ## \left. \bar{B} \right|_0## can I ?

Thanks.
 
Last edited by a moderator:
Mathematics news on Phys.org
binbagsss said:
I have an observable denoted by C, related to a complex potential B by :

## C= \bar{B}B ,##

where ##B## is a complex potential. I know that ## \left. C \right|_0 =C_0 ##, a known constant, where the evaluation at ##_0## denotes an equilibrium \ reference state. From this, I can not make any conclusions on ## \left. B \right|_0##, or ## \left. \bar{B} \right|_0## can I ?

Thanks.
You forgot to use '##'. It is always a good practice to preview Latex to make sure it is doing what you want.
 
FactChecker said:
You forgot to use '##'. It is always a good practice to preview Latex to make sure it is doing what you want.
i didn't, it just created it on a new line and i didnt want that.
 
In your first post, I see a lot of single '#'s. Those should all be double '##'.
 
i thought double creates a new line. anyway, it wont let me edit it now.
 
(LaTex fixed)
 
  • Like
Likes jim mcnamara and FactChecker
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top