Graduate Can Equilibrium State Determine Complex Potential?

Click For Summary
The discussion centers on the relationship between an observable C and a complex potential B, expressed as C = B̅B, with C evaluated at an equilibrium reference state C₀. The original poster questions whether they can infer any conclusions about B or its conjugate B̅ at this equilibrium state. Participants note issues with LaTeX formatting, suggesting that proper syntax is crucial for clarity. The conversation highlights the challenge of deriving information about B from the known value of C at equilibrium. Ultimately, the inability to determine B or B̅ from C at the equilibrium state remains unresolved.
binbagsss
Messages
1,291
Reaction score
12
I have an observable denoted by C, related to a complex potential B by :

## C= \bar{B}B ,##

where ##B## is a complex potential. I know that ## \left. C \right|_0 =C_0 ##, a known constant, where the evaluation at ##_0## denotes an equilibrium \ reference state. From this, I can not make any conclusions on ## \left. B \right|_0##, or ## \left. \bar{B} \right|_0## can I ?

Thanks.
 
Last edited by a moderator:
Mathematics news on Phys.org
binbagsss said:
I have an observable denoted by C, related to a complex potential B by :

## C= \bar{B}B ,##

where ##B## is a complex potential. I know that ## \left. C \right|_0 =C_0 ##, a known constant, where the evaluation at ##_0## denotes an equilibrium \ reference state. From this, I can not make any conclusions on ## \left. B \right|_0##, or ## \left. \bar{B} \right|_0## can I ?

Thanks.
You forgot to use '##'. It is always a good practice to preview Latex to make sure it is doing what you want.
 
FactChecker said:
You forgot to use '##'. It is always a good practice to preview Latex to make sure it is doing what you want.
i didn't, it just created it on a new line and i didnt want that.
 
In your first post, I see a lot of single '#'s. Those should all be double '##'.
 
i thought double creates a new line. anyway, it wont let me edit it now.
 
(LaTex fixed)
 
  • Like
Likes jim mcnamara and FactChecker
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
64
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K