physics1000
- 104
- 4
Oh sorry, I know how to latex, I did it before at this post.Orodruin said:Still impossible to see what is written in text. This is how it looks:
View attachment 337103
For the future, please learn to use the LaTeX features of the forum.As I told you several times, this was never a problem. Your problem was not shifting the potential to keep the zero level at the correct place. The point-particle potential you should be using was
$$
G(\vec r, \vec r') = \frac{1}{4\pi \epsilon_0} \left( \frac{1}{|\vec r - \vec r'|} - \frac{1}{|\vec r'|}\right)
$$
This has the same derivatives with respect to the unprimed coordinates as the typical point-particle potential (the first term) but is constructed to have the zero-level at the origin ##\vec r = 0##. The integral will converge without issues.
Alternatively you can just take the integral from ##-Z## to ##Z##, subtract the potential at the origin after, and then let ##Z \to \infty##.
I will write it now:
##\vec{r\:\:}=\left(x,\:y,\:z\right)\:##
##\:\vec{r'\:\:}=\left(a,\:0,\:z'\right)##
##\vec{R_{\:\:}}\:=\:\left(x-a,\:y,\:-z'\right)##
##\:\left|\vec{R\:}\right|=\:\left(\left(x-a\right)^2+y^2+\left(z'\right)^2\right)^{\frac{1}{2}}##
##\lambda \left(\vec{r'\:}\right)=\lambda _0##
##\Phi \left(\vec{r'\:}\right)=\frac{1}{4\pi \epsilon _0}\int _{-\infty }^{+\infty }\frac{\lambda _0}{\left(\left(x-a\right)^2+y^2+\left(z'\right)^2\right)^{\frac{1}{2}}}\:dz'##
Not Good, so we find Electric field
##\:\:\:\:\:\vec{E}\left(\vec{r\:}\right)=\frac{\lambda _0}{4\pi \epsilon _0}\int _{-\infty \:}^{+\infty \:}\frac{\lambda \:_0}{\left(\left(x-a\right)^2+y^2+\left(z'\right)^2\right)^{\frac{3}{2}}}\:dz'\:=\frac{\lambda _0}{2\pi \epsilon _0}\left[\frac{1}{\left(x-a\right)^2+y^2}\right]\hat{r\:}##
And then
##\Phi \left(\vec{r'\:}\right)=-\frac{\lambda _0}{2\pi \epsilon _0}\int _a^{\sqrt{\left(x-a\right)^2+y^2}}\frac{1}{r}dr\:=\frac{-\lambda _0}{2\pi \epsilon _0}ln\left(\frac{\sqrt{\left(x-a\right)^2+y^2}}{a}\right)##
And about your idea, I dont really understand how it shifted it to zero? and what it means by that.