StevieTNZ said:
Are you basically asking, can I choose the outcome of a measurement (e.g. photon polarized horizontal versus vertical, 1/2 probability for each polarization)?
I'm entering a busy time now, so I can't get into discussions until the New Year. But, I'll summarise what I was thinking;
- An isolated system is in a superposition of two known orthogonal states.
- Both copies of it create and send photons
- The photons' timing etc. is so precisely controlled that they are not affected by the decoherence between the two copies of the system
- The photons therefore interfere, and we receive a photon whose state is a proxy for the qubit that split the isolated system in the first place
- So, if the received qubit has a polarity aH + bV, where H and V are the polarities of the photons created in the two superposed copies of the isolated system, then the entire isolated system is in a |state1> + b |state2>
- It collapses to one of our new basis vectors, with very high probability (if it collapses to the other one, the game is over and we lose)
- My assumption was that the isolated state, relative to us, now has the corresponding state. We have adjusted a and b.
- Repeat the process. The isolated state keeps sending us photons. We keep rotating the measurement basis very slightly with each measurement.
- Eventually we can adjust a and b to a desired outcome, with very high probability.
I'm interpreting QM in the "relative" way. I believe the state of the isolated system is not objective, but is
relative to the information that we hold about it. And, although we have a lot of information about the contents (which we put in there), we originally have zero information about the qubit that split the contents into two states. For us, that decision literally has not happened.
Therefore, by manipulating that information, I am manipulating
our knowledge of the system's state, not the system itself. I'm not trying to revive a dead cat; I believe that a live cat and a dead cat are both in there, equally real, in two distinct "worlds", and I am trying to manoevre myself around to align with one of those two "worlds".
David