Can I use individual capacitor IR for parallel circuit balancing resistors?

  • Thread starter Thread starter sodoyle
  • Start date Start date
  • Tags Tags
    Resistor Sizing
AI Thread Summary
Balancing resistors are essential for series capacitors to prevent voltage mismatches due to leakage currents. For parallel capacitors, the equivalent insulation resistance (IR) decreases, suggesting that balancing resistors should be sized accordingly, potentially at one order of magnitude lower than the individual capacitor IR. However, the discussion highlights that the sizing of these resistors can also be based on the individual capacitor IR rather than the equivalent IR of the parallel branch. While considering the time constant, it's noted that increasing the number of parallel capacitors necessitates lower resistance values, but practical limits exist due to power consumption concerns. Ultimately, each capacitor should ideally have its own resistor to maintain effective voltage balancing across the system.
sodoyle
Messages
34
Reaction score
1
TL;DR Summary
I would like to size voltage balancing resistors for capacitors.
I am going to have several series/parallel capacitors so need balancing resistors. I understand that for series capacitors, it is wise to use voltage balancing resistors so mismatch in individual series capacitors leakage current can flow through the resistors which prevents individual capacitors from charging more than desired.

As an example, let's say the insulation resistance (IR) of a given capacitor is 50MEG. I think selecting a resistor at least one order of magnitude lower (5MEG) would be suitable. Assuming I have 2 series capacitors, I would place a resistor across each so I'd also have two series 5MEG resistors.

My question comes to parallel capacitors. If I place two capacitors in parallel, circuit theory would give an equivalent IR of 25MEG. This would mean that I now need maximum 2.5MEG balancing resistors. Thinking about it using the current divider though, it seems like 5MEG should still be fine. Let's say I still have two in series and two in parallel...if the top parallel capacitors have combined 1 mA leakage current and the bottom parallel capacitors have a combined 0.95 mA leakage current, the real impedance of each capacitor would still be 50MEG so the excess 0.5 mA would still have the same difference in impedance when "deciding" to flow through the capacitors or balancing resistor. Therefore, I think the balancing resistor sizing can be based on an individual capacitors IR and not the "equivalent IR" of the parallel branch.

Is this correct or am I off in my reasoning?
 
Last edited:
Engineering news on Phys.org
Maybe look at it from a time constant point of view. Each capacitor has a parallel resistor, such that the product R·C is a constant in the capacitor bank. That way, as the system voltage rises or falls, the capacitors all rise and fall in proportion.
 
  • Like
Likes sophiecentaur and hutchphd
Baluncore said:
Maybe look at it from a time constant point of view. Each capacitor has a parallel resistor, such that the product R·C is a constant in the capacitor bank. That way, as the system voltage rises or falls, the capacitors all rise and fall in proportion.
Looking at it from the time constant point of view it looks like the resistance would need to decrease proportionally to the increase in capacitance. In other words, if I have 4 capacitors in parallel, the balancing resistors would need to be 4x lower than the value with no parallel caps (assuming all capacitors are the same value). If that's the case, it seems reasonable only to a certain extent. At some point the resistance would get too low and losses through them would be too high. I still see why it's important to consider the dynamic response for these resistors though.

From the steady state point of view, the R·C time constant wouldn't be as important as they'll only effect the static voltage balancing. As mentioned above, the RC time constant cannot be reasonably kept the same in all cases. If I parallel 50 capacitors, it may not be feasible to have 50x lower balancing resistors simply because of the increase in power consumption.
 
sodoyle said:
If I parallel 50 capacitors, it may not be feasible to have 50x lower balancing resistors simply because of the increase in power consumption.
If you have 50 capacitors in parallel, the leakage current will be 50 times greater so you will need one resistor with 1/50th of the resistance to conduct that leakage current.

Think of each capacitor as having it's own resistor. If there are 50 capacitors, there will be 50 resistors in parallel. The time constant of any combination will remain the same.
 
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
Back
Top