MHB Can Inequalities Be Proven? A Solution to a Complex Equation

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\sqrt{x^4+7x^3+x^2+7x}+3\sqrt{3x}\ge10x-x^2$.
 
Mathematics news on Phys.org
Hint:
Try to think from the perspective of proving the inequality by dividing the domain into two or more intervals.
 
Solution of other:

Since $\sqrt{x^4+7x^3+x^2+7x}+3\sqrt{3x}\ge10x-x^2$ is true for $x\ge 10$, the proof can continue for the interval $x<10$.

Squaring both sides gives:

$2\cdot 3^{\dfrac{3}{2}}\sqrt{x}\sqrt{x^4+7x^3+x^2+7x}+x^4+7x^3+x^2+34x \ge x^4-20x^3+100x^2$$\dfrac{2\cdot 3^{\dfrac{3}{2}}\sqrt{x}\sqrt{x^4+7x^3+x^2+7x}}{\sqrt{x}}\ge -27x^2+99x-34$

Now we have 2 cases, one of which the RHS is positive, and one of which where it is negative.

Case I:

$0<x<\dfrac{-\sqrt{681}+33}{18}$ or $\dfrac{\sqrt{681}+33}{18}<x<10$ These give RHS a negative, so the relation holds.

Case II:
$\dfrac{-\sqrt{681}+33}{18}<x<\dfrac{\sqrt{681}+33}{18}$

RHS is positive in this interval, so squaring both sides again we have

$\left(\dfrac{2\cdot 3^{\dfrac{3}{2}}\sqrt{x}\sqrt{x^4+7x^3+x^2+7x}}{\sqrt{x}}\right) ^2 \ge (-27x^2+99x-34)^2$

$-729x^4+5454x^3-10881x^2+6840x-400\ge 0$

$-(3x-4)^2(81x^2-390x+25) \ge 0$ and this inequality holds true in the interval $\dfrac{-\sqrt{681}+33}{18}<x<\dfrac{\sqrt{681}+33}{18}$ and therefore, we can conclude that $\sqrt{x^4+7x^3+x^2+7x}+3\sqrt{3x}\ge10x-x^2$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
8
Views
2K
Replies
13
Views
2K
Replies
7
Views
1K
Replies
1
Views
934
Replies
2
Views
1K
Replies
2
Views
1K
Replies
2
Views
2K
Back
Top