MHB Can Inequalities Be Proven? A Solution to a Complex Equation

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\sqrt{x^4+7x^3+x^2+7x}+3\sqrt{3x}\ge10x-x^2$.
 
Mathematics news on Phys.org
Hint:
Try to think from the perspective of proving the inequality by dividing the domain into two or more intervals.
 
Solution of other:

Since $\sqrt{x^4+7x^3+x^2+7x}+3\sqrt{3x}\ge10x-x^2$ is true for $x\ge 10$, the proof can continue for the interval $x<10$.

Squaring both sides gives:

$2\cdot 3^{\dfrac{3}{2}}\sqrt{x}\sqrt{x^4+7x^3+x^2+7x}+x^4+7x^3+x^2+34x \ge x^4-20x^3+100x^2$$\dfrac{2\cdot 3^{\dfrac{3}{2}}\sqrt{x}\sqrt{x^4+7x^3+x^2+7x}}{\sqrt{x}}\ge -27x^2+99x-34$

Now we have 2 cases, one of which the RHS is positive, and one of which where it is negative.

Case I:

$0<x<\dfrac{-\sqrt{681}+33}{18}$ or $\dfrac{\sqrt{681}+33}{18}<x<10$ These give RHS a negative, so the relation holds.

Case II:
$\dfrac{-\sqrt{681}+33}{18}<x<\dfrac{\sqrt{681}+33}{18}$

RHS is positive in this interval, so squaring both sides again we have

$\left(\dfrac{2\cdot 3^{\dfrac{3}{2}}\sqrt{x}\sqrt{x^4+7x^3+x^2+7x}}{\sqrt{x}}\right) ^2 \ge (-27x^2+99x-34)^2$

$-729x^4+5454x^3-10881x^2+6840x-400\ge 0$

$-(3x-4)^2(81x^2-390x+25) \ge 0$ and this inequality holds true in the interval $\dfrac{-\sqrt{681}+33}{18}<x<\dfrac{\sqrt{681}+33}{18}$ and therefore, we can conclude that $\sqrt{x^4+7x^3+x^2+7x}+3\sqrt{3x}\ge10x-x^2$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
990
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K