Can lines in 3D be parametrized by the same variable?

Click For Summary
The discussion centers on whether two lines represented in 3D space can be parametrized by the same variable and whether they intersect. The lines L1 and L2 do not intersect, and their lack of intersection is not due to the use of the same parameter but rather because they are not linearly dependent. To analyze their relationship, one should solve the equations derived from setting the coordinates of L1 equal to those of L2. It is recommended to use different parameters for each line to avoid confusion. Ultimately, the lines are confirmed not to intersect based on the analysis of their equations.
inknit
Messages
58
Reaction score
0
For example.

L1: x = 11+3t y = 7+t z = 9+2t

L2: x=-6+4t y=-2+3t z=-7+5t

I was given this problem, and technically these lines don't intersect, right?
 
Physics news on Phys.org
inknit said:
For example.

L1: x = 11+3t y = 7+t z = 9+2t

L2: x=-6+4t y=-2+3t z=-7+5t

I was given this problem, and technically these lines don't intersect, right?

The only way both of these lines can be described by the same variable is if the two lines are linearly dependent.

If this is not the case, you need two variables one for each line.
 
Alright so, they don't intersect correct? B/c if you replace the variable in L1 with let's say "s" they intersect at some point.
 
inknit said:
Alright so, they don't intersect correct? B/c if you replace the variable in L1 with let's say "s" they intersect at some point.

I didn't say they don't intersect. If you want to check what happens solve the linear system L1 = L2.
 
inknit said:
For example.

L1: x = 11+3t y = 7+t z = 9+2t

L2: x=-6+4t y=-2+3t z=-7+5t

I was given this problem, and technically these lines don't intersect, right?
They don't happen to intersect (and not just "technically") but not because the use the same parameter. A parameter has no meaning outside the equation itself. So as not to confuse yourself, it would be better to change one of them to, say, "s". To determine if they intersect, try to solve x= 11+ 3t= -6+ 4s, y= 7+ t= -2+ 3s, z= 9+ 2t= -7+ 5s for s and t.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
17
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K