I Can Quantum Effects Prevent Reaching Absolute Zero?

nomadreid
Gold Member
Messages
1,748
Reaction score
243
TL;DR Summary
Do quantum effects as well as thermodynamic laws forbid zero Kelvin? Is there a non-zero greatest lower bound?
In https://phys.org/news/2016-09-cold-black-holes.html it is stated that a supermassive black hole interior could be 10^-14 degrees Kelvin. Is there a limit, perhaps due to quantum effects, below which a temperature (in a black hole or elsewhere) can go? Or do the possibilities approach 0 asymptotically, with only 0 being the theoretical minimum?

Putting it slightly differently: Usually the laws of thermodynamics are invoked to forbid absolute zero; in https://en.wikipedia.org/wiki/Absolute_zero, it is stated that one cannot reach absolute zero by thermodynamic means. Are there other means besides thermodynamic that could subtract energy, or are there quantum effects that would forbid it as well?
 
Physics news on Phys.org
nomadreid said:
In https://phys.org/news/2016-09-cold-black-holes.html it is stated that a supermassive black hole interior could be 10^-14 degrees Kelvin.
This would be true (assuming our current beliefs about Hawking radiation are correct) if the hole was alone in the universe, but it's not. In our actual universe, the hole would be, even if no other matter fell in, continually absorbing CMBR radiation at 2.7 K, so (a) its mass would be increasing, not decreasing, and (b) the Hawking temperature is not a good description of its actual conditions.

As usual, phys.org does not bother to mention all of the relevant items.

nomadreid said:
Is there a limit, perhaps due to quantum effects, below which a temperature (in a black hole or elsewhere) can go? Or do the possibilities approach 0 asymptotically, with only 0 being the theoretical minimum?
As far as I know, theoretically, there is no minimum and absolute zero can in principle be approached asymptotically. The practical issue is that the colder something is, the harder it gets to remove any more heat from it, with the difficulty increasing without bound as absolute zero is approached. I don't know of any quantum effects that change that.
 
  • Like
Likes nomadreid and vanhees71
Thanks for the very helpful reply, PeterDonis.
 
nomadreid said:
Thanks for the very helpful reply, PeterDonis.
You're welcome!
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top