I Can Quantum Entanglement Enhance Atomic Measurement Accuracy?

  • I
  • Thread starter Thread starter kelly0303
  • Start date Start date
  • Tags Tags
    Atoms Qubits
kelly0303
Messages
573
Reaction score
33
Hello! I don't know much about quantum computing beside some basic notions, but I was wondering if there are techniques used there that can be used in measuring properties more accurately compared to current laser based techniques (e.g. Ramsey interferometry, infrared interferometry)? For example (this might make no sense) as far as I understand, entanglement is one of the main physical phenomena that make qubits so much better than classical bits. Could we use, say, two entangled atoms to get a better measurement than we would from measuring the 2 atoms separately? Can someone point me towards some papers about using quantum information techniques in atomic physics? Thank you!
 
Physics news on Phys.org
Not sure what your areas of interest are, but quantum logic clocks are an example of entanglement being applied to a very traditional use of atomic physics (timekeeping). Back when I was still in the loop, the NIST aluminum ion clock was the most precise timekeeper around. The technique of entangling one "science" ion and one "logic" ion has potential utility for precision measurements as well. You could imagine doing a Ramsey-type experiment on an interesting but inaccessible transition in the "science" ion using the "logic" ion as an intermediary. There probably are experiments that do something like this, I just can't remember who's doing what anymore.
 
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top