MHB Can Submodules of a Noetherian Module Fail to Intersect with a Given Submodule?

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    module Modules
Click For Summary
The discussion centers on understanding Proposition 4.2.5 from Paul E. Bland's "Rings and Their Modules," specifically regarding Noetherian modules. The first question addresses whether an ascending chain of submodules can fail to intersect with a given submodule, with the response clarifying that while intersections can be empty, the proof remains valid. The second question explores why an element in a submodule implies its corresponding element in the quotient, with the explanation confirming that inclusion in the submodule leads to inclusion in the sum with the submodule. Overall, the participants clarify the implications of module intersections and the structure of submodules in Noetherian contexts.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Section 4.2: Noetherian and Artinian Modules and need some help to fully understand the proof of part of Proposition 4.2.5 ... ...

Proposition 4.2.5 reads as follows:
View attachment 8188
https://www.physicsforums.com/attachments/8189My questions are as follows:Question 1

In the above text from Bland we read the following:

" ... ... Conversely, suppose that $$N$$ and $$M/N$$ are noetherian. Let$$M_1 \subseteq M_2 \subseteq M_3 \subseteq \ ... \ ... $$be an ascending chain of submodules of $$M$$. Then $$M_1 \cap N \subseteq M_2 \cap N \subseteq M_3 \cap N \subseteq \ ... \ ...$$ ... ... "My question is ... what about the case where all the $$M_i$$ fail to intersect with $$N$$ ... is this possible ... if so how does the proof read then ...?
Question 2

In the above text from Bland we read the following:

" ... ... If $$i \ge n$$ and $$x \in M_i$$ then $$x + N \in (M_i + N)/N = (M_n + N)/N$$ ... ... "My question is ... why does $$x \in M_i \Longrightarrow x + N \in (M_i + N)/N$$ ... ... is it because ...

$$x \in M_i \Longrightarrow x + 0_N + N \in (M_i + N)/N$$ ...

... and $$x + 0_N + N = x + N$$ ... ... ?
Hope someone can help ...

Peter
 
Physics news on Phys.org
Q1: $M_i$ and $N$ are both submodules of $M$, therefore $M_i \cap N$ can never be empty.

If $M_n \cap N = 0$ then of course $M_i \cap N = 0$ for $i \leq n$. ($0 = \{ 0 \}$ is the zero-module.)

The proof, however, remains the same.

Q2: if $x \in M_i$ then $x \in M_i + N$ and. because $N \leq M_i + N$, we have $x + N \in (M_i + N)/N$
 
steenis said:
Q1: $M_i$ and $N$ are both submodules of $M$, therefore $M_i \cap N$ can never be empty.

If $M_n \cap N = 0$ then of course $M_i \cap N = 0$ for $i \leq n$. ($0 = \{ 0 \}$ is the zero-module.)

The proof, however, remains the same.

Q2: if $x \in M_i$ then $x \in M_i + N$ and. because $N \leq M_i + N$, we have $x + N \in (M_i + N)/N$
Thanks for thr help Steenis ...

Peter
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
Replies
21
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K