Graduate Can the Cauchy-Kovalewskaya Theorem Predict Solution Existence in All Cases?

  • Thread starter Thread starter wrobel
  • Start date Start date
  • Tags Tags
    Example
Click For Summary
The discussion highlights that the Cauchy-Kovalewskaya theorem does not guarantee the existence of solutions when its conditions are unmet, illustrated by an initial value problem that lacks an analytic solution at a specific point. However, it introduces a Banach space of entire functions where a modified initial value problem does have a unique solution in a different function space. The solution is derived through a transformation of the original problem into an infinite system of ordinary differential equations. This approach demonstrates that, despite the limitations of the Cauchy-Kovalewskaya theorem, unique solutions can still exist under certain conditions. The findings emphasize the nuanced relationship between the theorem's applicability and the existence of solutions in various mathematical contexts.
wrobel
Science Advisor
Insights Author
Messages
1,224
Reaction score
1,034
Just a simple observation, hope it would be interesting.

This example is very well known. It shows that if the conditions of the Cauchy-Kovalewskaya theorem are not satisfied then the solution is not obliged to exist.
Consider an initial value problem
$$u_t=u_{zz},\quad u(t=0,z)=\frac{1}{1+z^2},\quad t,z\in\mathbb{C}.$$ Kowalewskaya proved that this problem does not have a solution ##u(t,z)## which is an analytic function at the point ##t=0,\quad z=0##.

Nevertheless consider a Banach space
$$X=\Big\{v=\sum_{k=0}^\infty v_kz^k\mid \|v\|=\sup_{k}\{k! |v_k|\}<\infty\Big\}.$$ This is a subspace of the space of entire functions.

Theorem. The following IVP
$$u_t=u_{zz},\quad u(t=0,z)=\hat u(z)=\sum_{k=0}^\infty\hat u_kz^k\in X\qquad (*)$$ has a unique solution
$$u\in C^1(\mathbb{R},X).$$

Indeed, substitute ##u(t,z)=\sum_{k=0}^\infty u_k(t)z^k## to (*) and have
$$\dot u_k=(k+2)(k+1)u_{k+2},\quad u_k(0)=\hat u_k,\quad k=0,1,2...$$
This is an initial value problem for the infinite system of ODE. After a change of variables ##u_k=\frac{w_k}{k!}## this system takes the form
$$\dot w_k=w_{k+2},\quad w_k(0)=k! \hat u_k.$$
By the standard existence theorem for ODE this IVP has a solution ##\{w_k(t)\}\in C^1(\mathbb{R},\ell_\infty)##.
That is all :)
 
Last edited:

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 0 ·
Replies
0
Views
335
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 1 ·
Replies
1
Views
7K