A Can the Cauchy-Kovalewskaya Theorem Predict Solution Existence in All Cases?

  • Thread starter Thread starter wrobel
  • Start date Start date
  • Tags Tags
    Example
wrobel
Science Advisor
Insights Author
Messages
1,204
Reaction score
1,026
Just a simple observation, hope it would be interesting.

This example is very well known. It shows that if the conditions of the Cauchy-Kovalewskaya theorem are not satisfied then the solution is not obliged to exist.
Consider an initial value problem
$$u_t=u_{zz},\quad u(t=0,z)=\frac{1}{1+z^2},\quad t,z\in\mathbb{C}.$$ Kowalewskaya proved that this problem does not have a solution ##u(t,z)## which is an analytic function at the point ##t=0,\quad z=0##.

Nevertheless consider a Banach space
$$X=\Big\{v=\sum_{k=0}^\infty v_kz^k\mid \|v\|=\sup_{k}\{k! |v_k|\}<\infty\Big\}.$$ This is a subspace of the space of entire functions.

Theorem. The following IVP
$$u_t=u_{zz},\quad u(t=0,z)=\hat u(z)=\sum_{k=0}^\infty\hat u_kz^k\in X\qquad (*)$$ has a unique solution
$$u\in C^1(\mathbb{R},X).$$

Indeed, substitute ##u(t,z)=\sum_{k=0}^\infty u_k(t)z^k## to (*) and have
$$\dot u_k=(k+2)(k+1)u_{k+2},\quad u_k(0)=\hat u_k,\quad k=0,1,2...$$
This is an initial value problem for the infinite system of ODE. After a change of variables ##u_k=\frac{w_k}{k!}## this system takes the form
$$\dot w_k=w_{k+2},\quad w_k(0)=k! \hat u_k.$$
By the standard existence theorem for ODE this IVP has a solution ##\{w_k(t)\}\in C^1(\mathbb{R},\ell_\infty)##.
That is all :)
 
Last edited:
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 1 ·
Replies
1
Views
7K
Replies
1
Views
2K