Can the dimension of a basis be less than the space that it spans?

Click For Summary
SUMMARY

The discussion centers on the subspace \( S \) of \( \mathbb{R}^2 \) defined by the equation \( 2x + 3y = 0 \). The basis \( B \) for \( S \) is confirmed to be \( \{(-\frac{3}{2}, 1)\} \), which spans the subspace. The vector \( u = (-9, 6) \) can be expressed in the basis \( B \) as \( [u]_B = [6] \), indicating that \( u \) is a linear combination of the basis vector. The dimension of \( S \) is established as 1, contrasting with the dimension of \( \mathbb{R}^2 \), which is 2.

PREREQUISITES
  • Understanding of linear algebra concepts, specifically subspaces and bases.
  • Familiarity with vector representation in different bases.
  • Knowledge of linear combinations and their applications in vector spaces.
  • Basic proficiency in solving linear equations in two variables.
NEXT STEPS
  • Study the concept of vector spaces and their dimensions in linear algebra.
  • Learn about the process of finding bases for different subspaces in \( \mathbb{R}^n \).
  • Explore the method of expressing vectors in various bases, including coordinate transformations.
  • Investigate the implications of dimensionality in relation to spanning sets and bases.
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on linear algebra, vector spaces, and their applications in higher-dimensional analysis.

Pedro1
Messages
4
Reaction score
0
Let S be a subspace of $\mathbb{R^2}$, such that $S=\{(x,y):2x+3y=0 \}$.
Find a basis,$B$, for $S$ and write $u=(-9,6)$ in the $B$ basis.

So, I started to solve $2x+3y=0$ for $x$ and I got $x=-\frac{3}{2}y$. Then I could write,

$\left[ \begin{matrix} x \\ y \end{matrix}\right] = \left[ \begin{matrix} -\frac{3}{2} y \\ y \end{matrix} \right] = y\left[ \begin{matrix} -\frac{3}{2} \\ 1 \end{matrix} \right]$

So I was force to conclued that S is spaned by the vector $(-\frac{3}{2},1)$. My doubt is if it is correct to assume that $\{(-\frac{3}{2},1) \}$ is a basis of $S$. Because, in this circunstances, I don't know how to write the vector $u$ in the basis $B$.
Thanks for the help.
 
Last edited:
Physics news on Phys.org
Pedro said:
Let S be a subspace of $\mathbb{R^2}$, such that $S=\{(x,y):2x+3y=0 \}$.
Find a basis,$B$, for $S$ and write $u=(-9,6)$ in the $B$ basis.

So, I started to solve $2x+3y=0$ for $x$ and I got $x=-\frac{3}{2}y$. Then I could write,

$\left[ \begin{matrix} x \\ y \end{matrix}\right] = \left[ \begin{matrix} -\frac{3}{2} y \\ y \end{matrix} \right] = y\left[ \begin{matrix} -\frac{3}{2} \\ 1 \end{matrix} \right]$

So I was force to conclued that S is spaned by the vector $(-\frac{3}{2},1)$. My doubt is if it is correct to assume that $\{(-\frac{3}{2},1) \}$ is a basis of $S$. Because, in this circunstances, I don't know how to write the vector $u$ in the basis $B$.
Thanks for the help.

Welcome to MHB, Pedro! :)

Yes, you have a correct basis.

To write a vector in a basis, you need to find a linear combination of your basis vectors.
In your case that is $\mathbf u = 6 \cdot (-\frac{3}{2},1)$.

And to answer your question in the thread title, no, the number of vectors in a basis matches the dimension of the space they span by definition.
 
Pedro said:
Let S be a subspace of $\mathbb{R^2}$, such that $S=\{(x,y):2x+3y=0 \}$.
Find a basis,$B$, for $S$ and write $u=(-9,6)$ in the $B$ basis.

So, I started to solve $2x+3y=0$ for $x$ and I got $x=-\frac{3}{2}y$. Then I could write,

$\left[ \begin{matrix} x \\ y \end{matrix}\right] = \left[ \begin{matrix} -\frac{3}{2} y \\ y \end{matrix} \right] = y\left[ \begin{matrix} -\frac{3}{2} \\ 1 \end{matrix} \right]$

So I was force to conclued that S is spaned by the vector $(-\frac{3}{2},1)$. My doubt is if it is correct to assume that $\{(-\frac{3}{2},1) \}$ is a basis of $S$. Because, in this circunstances, I don't know how to write the vector $u$ in the basis $B$.
Thanks for the help.

We have $\left[ \begin{matrix} -9 \\ 6 \end{matrix}\right]=6\left[ \begin{matrix} -3/2 \\ 1 \end{matrix}\right]$. This implies that the coordinate vector of $u$ a in terms of $B=\{(-3/2,1)\}$ is $_B=[6]$ (only one coordinate).

P.S. Sorry I Like Serena, I had almost completed my post.
 
Thanks for the help.
I kown the the vector $u$ is on the trivial basis of $\mathbb{R^2}$ and so $(-9,6)=-9(1,0)+6(0,1)$. Normaly what I do is write each vector of the trivial basis as a linear combination of the given basis, in this case $B$.
But,

$(1,0)=\lambda\left (-\frac{3}{2},1 \right )$

I couln't find the $\lambda$.

The dimension of $B$ is $1$, but $S \subset \mathbb{R^2}$ have dimension $2$.
 
Pedro said:
but $S \subset \mathbb{R^2}$ have dimension $2$.

$S$ has dimension 1. :)
 
Fernando Revilla said:
$S$ has dimension 1. :)

Well, I thougt that the dimension was the number of vectors that the trivial basis have. In this case $\mathbb{R^2}$ have $2$.
 
Pedro said:
Well, I thougt that the dimension was the number of vectors that the trivial basis have. In this case $\mathbb{R^2}$ have $2$.

Yes. $\mathbb{R^2}$ has a trivial basis with 2 basis vectors, implying it has 2 dimensions.
Your S has a basis of 1 vector, implying it has 1 dimension.
 

Similar threads

  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
2K