Can the Inequality Challenge be Proven: 2^{\frac{1}{3}}+2^{\frac{2}{3}}<3?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary
SUMMARY

The inequality challenge of proving that $$2^{\frac{1}{3}} + 2^{\frac{2}{3}} < 3$$ has been effectively demonstrated through a series of mathematical deductions. The proof utilizes the properties of cube roots and inequalities, establishing that $$2^{1/3} > 5/4$$ and consequently $$\dfrac{1}{2^{1/3} - 1} < 4$$. This leads to the conclusion that $$2^{2/3} + 2^{1/3} < 3$$, confirming the original inequality. The discussion also highlights the need for further exploration of potential solutions to the cubic equation derived from the inequality.

PREREQUISITES
  • Understanding of cube roots and their properties
  • Familiarity with inequalities and their manipulation
  • Basic knowledge of polynomial functions and roots
  • Experience with mathematical proofs and logical reasoning
NEXT STEPS
  • Study the properties of cube roots in depth
  • Explore advanced techniques in proving inequalities
  • Learn about polynomial root-finding methods
  • Investigate the implications of cubic equations in real analysis
USEFUL FOR

Mathematicians, students studying algebra and analysis, and anyone interested in advanced inequality proofs and polynomial functions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $$2^{\frac{1}{3}}+2^{\frac{2}{3}}<3$$.
 
Mathematics news on Phys.org
[sp]$2 = 128/64 > 125/64$, so (taking cube roots) $2^{1/3} > 5/4$ and $2^{1/3} -1 >1/4$. Therefore $\dfrac1{2^{1/3} -1} < 4$. But $$1 = 2-1 = (2^{1/3})^3 - 1 = (2^{1/3} -1)(2^{2/3} + 2^{1/3} + 1),$$ and so $2^{2/3} + 2^{1/3} + 1 = \dfrac1{2^{1/3} -1} < 4$. Thus $2^{2/3} + 2^{1/3} < 3$.[/sp]
 
Opalg said:
[sp]$2 = 128/64 > 125/64$, so (taking cube roots) $2^{1/3} > 5/4$ and $2^{1/3} -1 >1/4$. Therefore $\dfrac1{2^{1/3} -1} < 4$. But $$1 = 2-1 = (2^{1/3})^3 - 1 = (2^{1/3} -1)(2^{2/3} + 2^{1/3} + 1),$$ and so $2^{2/3} + 2^{1/3} + 1 = \dfrac1{2^{1/3} -1} < 4$. Thus $2^{2/3} + 2^{1/3} < 3$.[/sp]

Thanks for participating, Opalg! I really admire your talent in approaching this type of problem using the way you did.

My solution:

Let $$y=2^{\frac{1}{3}}+2^{\frac{2}{3}}$$. We're then asked to proved that $y<3$.

Then $$y^3=2+3(2^{\frac{1}{3}})(2^{\frac{2}{3}})(2^{\frac{1}{3}}+2^{\frac{2}{3}})+2^2=6+6y$$

$$y^3-6y-6=0$$

If we let $f(y)=y^3-6y-6$, we see that $f(2)=-10$ and $f(3)=3$, hence by the Intermediate Value Theorem, $y$ must have a solution between 2 and 3, i.e. $y<3$ and so we're done.
 
anemone said:
Thanks for participating, Opalg! I really admire your talent in approaching this type of problem using the way you did.

My solution:

Let $$y=2^{\frac{1}{3}}+2^{\frac{2}{3}}$$. We're then asked to proved that $y<3$.

Then $$y^3=2+3(2^{\frac{1}{3}})(2^{\frac{2}{3}})(2^{\frac{1}{3}}+2^{\frac{2}{3}})+2^2=6+6y$$

$$y^3-6y-6=0$$

If we let $f(y)=y^3-6y-6$, we see that $f(2)=-10$ and $f(3)=3$, hence by the Intermediate Value Theorem, $y$ must have a solution between 2 and 3, i.e. $y<3$ and so we're done.

anemone,
the proof provided by you is far from complete
(because if we take
f(x) = (y-1.5)(y-2.5)(y+.5) = 0

we get f(2.0) < 0 and f(3) > 0 and it has 3 roots)

based on this we need to prove in your case
either it has no other real solution or other 2 solutions if real are no where near 2^(1/3) + 2^(2/3)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K