MHB Can the Inequality Challenge be Proven: 2^{\frac{1}{3}}+2^{\frac{2}{3}}<3?

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $$2^{\frac{1}{3}}+2^{\frac{2}{3}}<3$$.
 
Mathematics news on Phys.org
[sp]$2 = 128/64 > 125/64$, so (taking cube roots) $2^{1/3} > 5/4$ and $2^{1/3} -1 >1/4$. Therefore $\dfrac1{2^{1/3} -1} < 4$. But $$1 = 2-1 = (2^{1/3})^3 - 1 = (2^{1/3} -1)(2^{2/3} + 2^{1/3} + 1),$$ and so $2^{2/3} + 2^{1/3} + 1 = \dfrac1{2^{1/3} -1} < 4$. Thus $2^{2/3} + 2^{1/3} < 3$.[/sp]
 
Opalg said:
[sp]$2 = 128/64 > 125/64$, so (taking cube roots) $2^{1/3} > 5/4$ and $2^{1/3} -1 >1/4$. Therefore $\dfrac1{2^{1/3} -1} < 4$. But $$1 = 2-1 = (2^{1/3})^3 - 1 = (2^{1/3} -1)(2^{2/3} + 2^{1/3} + 1),$$ and so $2^{2/3} + 2^{1/3} + 1 = \dfrac1{2^{1/3} -1} < 4$. Thus $2^{2/3} + 2^{1/3} < 3$.[/sp]

Thanks for participating, Opalg! I really admire your talent in approaching this type of problem using the way you did.

My solution:

Let $$y=2^{\frac{1}{3}}+2^{\frac{2}{3}}$$. We're then asked to proved that $y<3$.

Then $$y^3=2+3(2^{\frac{1}{3}})(2^{\frac{2}{3}})(2^{\frac{1}{3}}+2^{\frac{2}{3}})+2^2=6+6y$$

$$y^3-6y-6=0$$

If we let $f(y)=y^3-6y-6$, we see that $f(2)=-10$ and $f(3)=3$, hence by the Intermediate Value Theorem, $y$ must have a solution between 2 and 3, i.e. $y<3$ and so we're done.
 
anemone said:
Thanks for participating, Opalg! I really admire your talent in approaching this type of problem using the way you did.

My solution:

Let $$y=2^{\frac{1}{3}}+2^{\frac{2}{3}}$$. We're then asked to proved that $y<3$.

Then $$y^3=2+3(2^{\frac{1}{3}})(2^{\frac{2}{3}})(2^{\frac{1}{3}}+2^{\frac{2}{3}})+2^2=6+6y$$

$$y^3-6y-6=0$$

If we let $f(y)=y^3-6y-6$, we see that $f(2)=-10$ and $f(3)=3$, hence by the Intermediate Value Theorem, $y$ must have a solution between 2 and 3, i.e. $y<3$ and so we're done.

anemone,
the proof provided by you is far from complete
(because if we take
f(x) = (y-1.5)(y-2.5)(y+.5) = 0

we get f(2.0) < 0 and f(3) > 0 and it has 3 roots)

based on this we need to prove in your case
either it has no other real solution or other 2 solutions if real are no where near 2^(1/3) + 2^(2/3)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top