MHB Can Two Points in a Cube Be Less Than √(3)/2 Apart?

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
There are $9$ points in the interior of a cube of side $1$.

a) Show that at least two of them are less than $\frac{1}{2}\sqrt{3}$ apart.

b) Can $\frac{1}{2}\sqrt{3}$ be replaced by a smaller number?
 
Mathematics news on Phys.org
Hint:

Divide the unit cube into $8$ cubes with side length $\frac{1}{2}$
 
Suggested solution:
(a). The cube may be partitioned into eight equal cubes, each with side of $\frac{1}{2}$, so that
at least one of these cubes contains more than one point. The greatest distance
between any two points in the interior of a cube is less than the length of its
longest diagonal, which in the case of the smaller cubes is precisely $\frac{1}{2}\sqrt{3}$.

(b). Placing a point at the center of the unit cube, and the remaining ones arbitrarily
close to the cube's vertices yields, among the distances between any two points,
one arbitrarily close to $\frac{1}{2}\sqrt{3}$. Hence, this number cannot be replaced by a smaller
one in the result of (a).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
1K
Replies
6
Views
2K
Replies
9
Views
11K
2
Replies
78
Views
6K
Replies
2
Views
1K
Replies
1
Views
2K
Back
Top