MHB What is the Value of \(x^5+y^5+z^5\) Given Initial Polynomial Conditions?

  • Thread starter Thread starter WMDhamnekar
  • Start date Start date
  • Tags Tags
    Apply Logic
AI Thread Summary
The discussion focuses on calculating the value of \(x^5+y^5+z^5\) given the polynomial conditions \(x+y+z=1\), \(x^2+y^2+z^2=2\), and \(x^3+y^3+z^3=3\). Using Newton's identities, the values of \(S_1\), \(S_2\), and \(S_3\) are derived, leading to \(S_2=-\frac{1}{2}\) and \(S_3=\frac{1}{6}\). The calculations for \(P_4\) yield \(\frac{25}{6}\), and ultimately, \(P_5\) is determined to be 6. The final result for \(x^5+y^5+z^5\) is 6.
WMDhamnekar
MHB
Messages
376
Reaction score
28
$\left\{
\begin{array}{rcl}
x+y+z &=& 1\\
x^2+y^2+z^2 &=& 2\\
x^3+y^3+z^3 &=& 3 \\
x^5+y^5+z^5 &=& ?
\end{array}\right.$How to find out $x^5+y^5+z^5=?$
 
Mathematics news on Phys.org
Dhamnekar Winod said:
$\left\{
\begin{array}{rcl}
x+y+z &=& 1\\
x^2+y^2+z^2 &=& 2\\
x^3+y^3+z^3 &=& 3 \\
x^5+y^5+z^5 &=& ?
\end{array}\right.$How to find out $x^5+y^5+z^5=?$
Hello,

For the readers, viewers, visitors, guests, lurkers and mathematical audience of thehttps://mathhelpboards.com, i am reproducing here,the answer to this question given by math expert on other math and science website on internet.

Let $P_n= x^n + y^n + z^n,$ where n is a positive integer, and $S_1= x+y+z= P_1, S_2= xy + yz + zx, S_3=xyz$

Now we have $P_1= S_1=1$
$P_2=S_1P_1-2S_2= 1- 2S_2=2 \Rightarrow S_2=-\frac12$

$P_3=S_1P_2-S_2P_1+ 3S_3= 2+\frac12 +3S_3=3, \Rightarrow S_3=\frac16$

$P_4=S_1P_3-S_2P_2+S_3P_1= 3 +1 + \frac16 =\frac{25}{6}$

$P_5=S_1P_4 -S_2P_3 + S_3P_2 =\frac{25}{6} +\frac32 +\frac13 = \boxed{6}$ Additional information is available at https://en.wikipedia.org/wiki/Newton's_identities
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
1
Views
1K
Replies
10
Views
2K
Replies
8
Views
1K
Replies
2
Views
1K
Replies
8
Views
1K
Replies
6
Views
1K
Replies
5
Views
1K
Back
Top