What is the Value of \(x^5+y^5+z^5\) Given Initial Polynomial Conditions?

  • Context: MHB 
  • Thread starter Thread starter WMDhamnekar
  • Start date Start date
  • Tags Tags
    Apply Logic
Click For Summary
SUMMARY

The value of \(x^5+y^5+z^5\) given the polynomial conditions \(x+y+z=1\), \(x^2+y^2+z^2=2\), and \(x^3+y^3+z^3=3\) is definitively calculated as 6. This result is derived using Newton's identities, where \(P_n\) represents the sum of powers of the variables. The calculations show that \(P_4\) equals \(\frac{25}{6}\) and \(P_5\) is computed as 6 through the established relationships involving symmetric sums \(S_1\), \(S_2\), and \(S_3\).

PREREQUISITES
  • Understanding of Newton's identities
  • Familiarity with symmetric sums in polynomial equations
  • Basic knowledge of algebraic manipulation
  • Ability to work with power sums
NEXT STEPS
  • Study Newton's identities in detail
  • Explore symmetric polynomials and their applications
  • Learn advanced algebraic techniques for solving polynomial equations
  • Investigate the relationship between power sums and symmetric sums
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in polynomial equations and their properties will benefit from this discussion.

WMDhamnekar
MHB
Messages
378
Reaction score
30
$\left\{
\begin{array}{rcl}
x+y+z &=& 1\\
x^2+y^2+z^2 &=& 2\\
x^3+y^3+z^3 &=& 3 \\
x^5+y^5+z^5 &=& ?
\end{array}\right.$How to find out $x^5+y^5+z^5=?$
 
Mathematics news on Phys.org
Dhamnekar Winod said:
$\left\{
\begin{array}{rcl}
x+y+z &=& 1\\
x^2+y^2+z^2 &=& 2\\
x^3+y^3+z^3 &=& 3 \\
x^5+y^5+z^5 &=& ?
\end{array}\right.$How to find out $x^5+y^5+z^5=?$
Hello,

For the readers, viewers, visitors, guests, lurkers and mathematical audience of thehttps://mathhelpboards.com, i am reproducing here,the answer to this question given by math expert on other math and science website on internet.

Let $P_n= x^n + y^n + z^n,$ where n is a positive integer, and $S_1= x+y+z= P_1, S_2= xy + yz + zx, S_3=xyz$

Now we have $P_1= S_1=1$
$P_2=S_1P_1-2S_2= 1- 2S_2=2 \Rightarrow S_2=-\frac12$

$P_3=S_1P_2-S_2P_1+ 3S_3= 2+\frac12 +3S_3=3, \Rightarrow S_3=\frac16$

$P_4=S_1P_3-S_2P_2+S_3P_1= 3 +1 + \frac16 =\frac{25}{6}$

$P_5=S_1P_4 -S_2P_3 + S_3P_2 =\frac{25}{6} +\frac32 +\frac13 = \boxed{6}$ Additional information is available at https://en.wikipedia.org/wiki/Newton's_identities
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K