Can we say that a charged balloon has a center of charge?

Click For Summary
SUMMARY

The discussion confirms that a charged balloon can be approximated as a point charge, particularly when it has a uniform charge distribution across its surface. The shell theorem is pivotal, stating that a uniformly charged spherical shell creates an external electric field equivalent to that of a point charge with the same total charge. Additionally, the formula for electric force, \(F_e = k \frac{Q_1 Q_2}{r^2}\), holds true for two uniformly charged balloons, provided they maintain spherical symmetry and uniform thickness.

PREREQUISITES
  • Understanding of the shell theorem in electrostatics
  • Familiarity with electric field concepts
  • Knowledge of point charge approximations
  • Basic grasp of Coulomb's law and electric force calculations
NEXT STEPS
  • Research the proof of the shell theorem in electrostatics
  • Study the implications of uniform charge distribution on electric fields
  • Explore point charge approximations in various physical scenarios
  • Learn about the applications of Coulomb's law in electrostatics
USEFUL FOR

Students and professionals in physics, particularly those focusing on electrostatics, electrical engineering, and anyone interested in the behavior of charged objects in electric fields.

Lotto
Messages
253
Reaction score
16
TL;DR
We can say that the balloon has a center of mass circa in the middle. When we charge the balloon so that charge density is everywhere the same, can we say that the center of the total charge is in the middel as well?
Doing so, we can consider the balloon to be a point charge (approximately). Can we do it in this case, when there are only electrons on its surface? Or is it stupid and we can't do it under any circumstances?
 
Physics news on Phys.org
Lotto said:
TL;DR Summary: We can say that the balloon has a center of mass circa in the middle. When we charge the balloon so that charge density is everywhere the same, can we say that the center of the total charge is in the middel as well?

Doing so, we can consider the balloon to be a point charge (approximately). Can we do it in this case, when there are only electrons on its surface? Or is it stupid and we can't do it under any circumstances?
The shell theorem tells you that a uniformly charge sphere or spherical shell creates the same external electric field as a point charge with the same total charge. And, the field inside a uniformly charged spherical shell is zero.

You should look up a proof of the shell theorem. It applies to electric fields and gravitational fields and, in fact, anything that obeys the inverse square law.
 
  • Like
Likes   Reactions: DaveE
PeroK said:
The shell theorem tells you that a uniformly charge sphere or spherical shell creates the same external electric field as a point charge with the same total charge. And, the field inside a uniformly charged spherical shell is zero.

You should look up a proof of the shell theorem. It applies to electric fields and gravitational fields and, in fact, anything that obeys the inverse square law.
And if I have two charged balloons and distance between their centers of masses is ##r##, can we say ##F_\mathrm e=k\frac {Q_1 Q_2}{r^2}##?
 
Lotto said:
And if I have two charged balloons and distance between their centers of masses is ##r##, can we say ##F_\mathrm e=k\frac {Q_1 Q_2}{r^2}##?
As long as they are spherical and uniformly charged - and assuming the centre of mass is at the geometric centre of the circle - then yes!
 
  • Like
Likes   Reactions: Lotto
Lotto said:
And if I have two charged balloons and distance between their centers of masses is ##r##, can we say ##F_\mathrm e=k\frac {Q_1 Q_2}{r^2}##?
To the extent that the balloons are spherical, have a uniform thickness (so a spherically symmetric mass distribution) and that the balloons are non-conducting so that a spherically symmetric charge distribution matching the uniform mass distribution is not affected by the approach of the other charged balloon, the answer is yes. The formula will work.

Note that there is no guarantee that the charge distribution will match the mass distribution. But I am assuming that you intend for the two to match.
 
  • Like
Likes   Reactions: Lotto
Lotto said:
Doing so, we can consider the balloon to be a point charge (approximately).
Any distribution of point charges can be approximated as a single point charge if you are far enough away from it.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
10
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 36 ·
2
Replies
36
Views
6K