B Can we say that a charged balloon has a center of charge?

AI Thread Summary
The discussion centers on whether a charged balloon can be treated as a point charge when it has a uniform charge distribution on its surface. The shell theorem indicates that a uniformly charged spherical shell produces an external electric field equivalent to that of a point charge with the same total charge, while the internal field is zero. For two charged balloons, if they are spherical, uniformly charged, and non-conducting, the formula for electric force between them can be applied as long as their charge distribution matches their mass distribution. The approximation holds true when the observer is sufficiently far from the charge distribution. Overall, the balloons can be considered point charges under the right conditions.
Lotto
Messages
251
Reaction score
16
TL;DR Summary
We can say that the balloon has a center of mass circa in the middle. When we charge the balloon so that charge density is everywhere the same, can we say that the center of the total charge is in the middel as well?
Doing so, we can consider the balloon to be a point charge (approximately). Can we do it in this case, when there are only electrons on its surface? Or is it stupid and we can't do it under any circumstances?
 
Physics news on Phys.org
Lotto said:
TL;DR Summary: We can say that the balloon has a center of mass circa in the middle. When we charge the balloon so that charge density is everywhere the same, can we say that the center of the total charge is in the middel as well?

Doing so, we can consider the balloon to be a point charge (approximately). Can we do it in this case, when there are only electrons on its surface? Or is it stupid and we can't do it under any circumstances?
The shell theorem tells you that a uniformly charge sphere or spherical shell creates the same external electric field as a point charge with the same total charge. And, the field inside a uniformly charged spherical shell is zero.

You should look up a proof of the shell theorem. It applies to electric fields and gravitational fields and, in fact, anything that obeys the inverse square law.
 
PeroK said:
The shell theorem tells you that a uniformly charge sphere or spherical shell creates the same external electric field as a point charge with the same total charge. And, the field inside a uniformly charged spherical shell is zero.

You should look up a proof of the shell theorem. It applies to electric fields and gravitational fields and, in fact, anything that obeys the inverse square law.
And if I have two charged balloons and distance between their centers of masses is ##r##, can we say ##F_\mathrm e=k\frac {Q_1 Q_2}{r^2}##?
 
Lotto said:
And if I have two charged balloons and distance between their centers of masses is ##r##, can we say ##F_\mathrm e=k\frac {Q_1 Q_2}{r^2}##?
As long as they are spherical and uniformly charged - and assuming the centre of mass is at the geometric centre of the circle - then yes!
 
Lotto said:
And if I have two charged balloons and distance between their centers of masses is ##r##, can we say ##F_\mathrm e=k\frac {Q_1 Q_2}{r^2}##?
To the extent that the balloons are spherical, have a uniform thickness (so a spherically symmetric mass distribution) and that the balloons are non-conducting so that a spherically symmetric charge distribution matching the uniform mass distribution is not affected by the approach of the other charged balloon, the answer is yes. The formula will work.

Note that there is no guarantee that the charge distribution will match the mass distribution. But I am assuming that you intend for the two to match.
 
Lotto said:
Doing so, we can consider the balloon to be a point charge (approximately).
Any distribution of point charges can be approximated as a single point charge if you are far enough away from it.
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Back
Top