MHB Can You Determine the Value of A When B Equals 4 in a Trigonometric Equation?

NotaMathPerson
Messages
82
Reaction score
0
A=3sinx+4cosx and B=3cosx-4sinx if B = 4 find A.

What i tried is to use 4=3cosx-4sinx and solve for cosx

now cosx = (4+4sinx)/3 plug this into A

I end up getting A = (25sinx+16)/3 am I correct?
 
Mathematics news on Phys.org
Re: Trigonometric equatio

NotaMathPerson said:
A\;=\,3\sin x+4\cos x\,\text{ and }\,B\,=\,3\cos x-4\sin x.

\text{If }B = 4.\,\text{ find }A.

\text{If }B = 4,\,\text{then }\,x = \tfrac{3\pi}{2}

\text{Then: }\,A \:=\:3\sin\tfrac{3\pi}{2} + 4\cos\tfrac{3\pi}{2} \:=\:3(-1) + 4(0) \:=\: -3
 
Re: Trigonometric equatio

soroban said:
\text{If }B = 4,\,\text{then }\,x = \tfrac{3\pi}{2}

\text{Then: }\,A \:=\:3\sin\tfrac{3\pi}{2} + 4\cos\tfrac{3\pi}{2} \:=\:3(-1) + 4(0) \:=\: -3
Hello soroban!

How did you get the value for x?
 
Re: Trigonometric equatio

I wrote: If B = 4,\, then x = \tfrac{3\pi}{2}
Here is the reasoning behind that claim.

We are given: B \,=\,3\cos x - 4\sin x
. . And we are told that: B = 4.
That is: 3\cos x - 4\sin x \:=\:4

This is true if \cos x = 0 and \sin x = -1.
Therefore: x \,=\,\tfrac{3\pi}{2}
 
Re: Trigonometric equatio

soroban said:
I wrote: If B = 4,\, then x = \tfrac{3\pi}{2}
Here is the reasoning behind that claim.

We are given: B \,=\,3\cos x - 4\sin x
. . And we are told that: B = 4.
That is: 3\cos x - 4\sin x \:=\:4

This is true if \cos x = 0 and \sin x = -1.
Therefore: x \,=\,\tfrac{3\pi}{2}

This isn't very rigorous, although I am impressed by your intuition :)

I would be more inclined to try to solve the problem directly...

$\displaystyle \begin{align*} A &= 3\sin{(x)} + 4\cos{(x)} \\ B &= 3\cos{(x)} - 4\sin{(x)} \\ \\ A^2 &= \left[ 3\sin{(x)} + 4\cos{(x)} \right] ^2 \\ B^2 &= \left[ 3\cos{(x)} - 4\sin{(x)} \right] ^2 \\ \\ A^2 &= 9\sin^2{(x)} + 24\sin{(x)}\cos{(x)} + 16\cos^2{(x)} \\ B^2 &= 9\cos^2{(x)} - 24\sin{(x)}\cos{(x)} + 16\sin^2{(x)} \\ \\ A^2 + B^2 &= 9\sin^2{(x)} + 24\sin{(x)}\cos{(x)} + 16\cos^2{(x)} + 9\cos^2{(x)} - 24\sin{(x)}\cos{(x)} + 16\sin^2{(x)} \\ A^2 + B^2 &= 25\left[ \sin^2{(x)} + \cos^2{(x)} \right] \\ A^2 + B^2 &= 25 \\ A^2 + 4^2 &= 25 \\ A^2 + 16 &= 25 \\ A^2 &= 9 \\ A &= \pm 3 \end{align*}$

Now you just have to check for extraneous solutions, as you have had to square the equations to be able to solve them.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
3
Views
3K
Replies
5
Views
1K
Replies
7
Views
3K
Replies
5
Views
3K
Replies
3
Views
1K
Replies
6
Views
3K
Back
Top