MHB Can You Determine the Value of A When B Equals 4 in a Trigonometric Equation?

AI Thread Summary
To determine the value of A when B equals 4 in the equations A = 3sin(x) + 4cos(x) and B = 3cos(x) - 4sin(x), it is established that if B = 4, then x = 3π/2. Substituting this value into the equation for A yields A = -3. Some participants explored alternative methods to derive A, including manipulating the equations directly and squaring them to find a relationship between A and B. The final conclusion is that A can equal either 3 or -3, depending on the context of the problem. The discussion emphasizes the importance of checking for extraneous solutions when squaring equations.
NotaMathPerson
Messages
82
Reaction score
0
A=3sinx+4cosx and B=3cosx-4sinx if B = 4 find A.

What i tried is to use 4=3cosx-4sinx and solve for cosx

now cosx = (4+4sinx)/3 plug this into A

I end up getting A = (25sinx+16)/3 am I correct?
 
Mathematics news on Phys.org
Re: Trigonometric equatio

NotaMathPerson said:
A\;=\,3\sin x+4\cos x\,\text{ and }\,B\,=\,3\cos x-4\sin x.

\text{If }B = 4.\,\text{ find }A.

\text{If }B = 4,\,\text{then }\,x = \tfrac{3\pi}{2}

\text{Then: }\,A \:=\:3\sin\tfrac{3\pi}{2} + 4\cos\tfrac{3\pi}{2} \:=\:3(-1) + 4(0) \:=\: -3
 
Re: Trigonometric equatio

soroban said:
\text{If }B = 4,\,\text{then }\,x = \tfrac{3\pi}{2}

\text{Then: }\,A \:=\:3\sin\tfrac{3\pi}{2} + 4\cos\tfrac{3\pi}{2} \:=\:3(-1) + 4(0) \:=\: -3
Hello soroban!

How did you get the value for x?
 
Re: Trigonometric equatio

I wrote: If B = 4,\, then x = \tfrac{3\pi}{2}
Here is the reasoning behind that claim.

We are given: B \,=\,3\cos x - 4\sin x
. . And we are told that: B = 4.
That is: 3\cos x - 4\sin x \:=\:4

This is true if \cos x = 0 and \sin x = -1.
Therefore: x \,=\,\tfrac{3\pi}{2}
 
Re: Trigonometric equatio

soroban said:
I wrote: If B = 4,\, then x = \tfrac{3\pi}{2}
Here is the reasoning behind that claim.

We are given: B \,=\,3\cos x - 4\sin x
. . And we are told that: B = 4.
That is: 3\cos x - 4\sin x \:=\:4

This is true if \cos x = 0 and \sin x = -1.
Therefore: x \,=\,\tfrac{3\pi}{2}

This isn't very rigorous, although I am impressed by your intuition :)

I would be more inclined to try to solve the problem directly...

$\displaystyle \begin{align*} A &= 3\sin{(x)} + 4\cos{(x)} \\ B &= 3\cos{(x)} - 4\sin{(x)} \\ \\ A^2 &= \left[ 3\sin{(x)} + 4\cos{(x)} \right] ^2 \\ B^2 &= \left[ 3\cos{(x)} - 4\sin{(x)} \right] ^2 \\ \\ A^2 &= 9\sin^2{(x)} + 24\sin{(x)}\cos{(x)} + 16\cos^2{(x)} \\ B^2 &= 9\cos^2{(x)} - 24\sin{(x)}\cos{(x)} + 16\sin^2{(x)} \\ \\ A^2 + B^2 &= 9\sin^2{(x)} + 24\sin{(x)}\cos{(x)} + 16\cos^2{(x)} + 9\cos^2{(x)} - 24\sin{(x)}\cos{(x)} + 16\sin^2{(x)} \\ A^2 + B^2 &= 25\left[ \sin^2{(x)} + \cos^2{(x)} \right] \\ A^2 + B^2 &= 25 \\ A^2 + 4^2 &= 25 \\ A^2 + 16 &= 25 \\ A^2 &= 9 \\ A &= \pm 3 \end{align*}$

Now you just have to check for extraneous solutions, as you have had to square the equations to be able to solve them.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Replies
3
Views
3K
Replies
5
Views
1K
Replies
7
Views
3K
Replies
5
Views
3K
Replies
3
Views
1K
Replies
6
Views
3K
Back
Top