MHB Can you prove this floor function challenge involving square roots?

Click For Summary
The discussion centers on proving the equality $\left\lfloor{\sqrt{n}+\sqrt{n+1}}\right\rfloor=\left\lfloor{\sqrt{4n+2}}\right\rfloor$ for all positive integers $n$. Participants share various approaches to demonstrate this mathematical statement, emphasizing the use of properties of square roots and floor functions. The conversation highlights the importance of rigorous proof techniques in number theory. Contributions include detailed calculations and logical reasoning to validate the equality. Overall, the challenge fosters engagement and collaboration among members interested in mathematical proofs.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\left\lfloor{\sqrt{n}+\sqrt{n+1}}\right\rfloor=\left\lfloor{\sqrt{4n+2}}\right\rfloor$ for any positive integer $n$.
 
Mathematics news on Phys.org
anemone said:
Prove that $\left\lfloor{\sqrt{n}+\sqrt{n+1}}\right\rfloor=\left\lfloor{\sqrt{4n+2}}\right\rfloor$ for any positive integer $n$.

LHS = $\lfloor{\sqrt{n}+\sqrt{n+1}}\rfloor $
= $\lfloor\sqrt{(\sqrt{n}+\sqrt{n+1})^2}\rfloor $
= $\lfloor\sqrt{n+n+1+2\sqrt{n(n+1)}}\rfloor $
= $\lfloor\sqrt{2n+1+2\sqrt{n(n+1)}}\rfloor $
= $\lfloor\sqrt{2n+1+2\sqrt{(n+\dfrac{1}{2})^2 + \dfrac{3}{4}}}\rfloor $
= $\lfloor\sqrt{2n+1+\sqrt{(2n+1)^2 + 3}}\rfloor $

now realising that integral part of square root of x and square root of x + t where t is less than 1 are sameso we need to find the integral part of $\sqrt{(2n+1)^2 + 3}$

$(2n+1)^2 + 3\gt(2n+1)^2$
and $(2n+1)^2 + 3\lt(2n+2)^2$ as $(2n+2)^2-(2n+1)^2 = 4n + 3$so integral part of $\sqrt{(2n+1)^2 + 3}$ = (2n + 1)

so LHS = $\lfloor\sqrt{2n+1+2n+1}\rfloor $
= $\lfloor\sqrt{4n+2}\rfloor $
= RHS
 
Last edited:
kaliprasad said:
LHS = $\lfloor{\sqrt{n}+\sqrt{n+1}}\rfloor $
= $\lfloor\sqrt{(\sqrt{n}+\sqrt{n+1})^2}\rfloor $
= $\lfloor\sqrt{n+n+1+2\sqrt{n(n+1)}}\rfloor $
= $\lfloor\sqrt{2n+1+2\sqrt{n(n+1)}}\rfloor $
= $\lfloor\sqrt{2n+1+2\sqrt{(n+\dfrac{1}{2})^2 + \dfrac{3}{4}}}\rfloor $
= $\lfloor\sqrt{2n+1+\sqrt{(2n+1)^2 + 3}}\rfloor $

now realising that integral part of square root of x and square root of x + t where t is less than 1 are sameso we need to find the integral part of $\sqrt{(2n+1)^2 + 3}$

$(2n+1)^2 + 3\gt(2n+1)^2$
and $(2n+1)^2 + 3\lt(2n+2)^2$ as $(2n+2)^2-(2n+1)^2 = 4n + 3$so integral part of $\sqrt{(2n+1)^2 + 3}$ = (2n + 1)

so LHS = $\lfloor\sqrt{2n+1+2n+1}\rfloor $
= $\lfloor\sqrt{4n+2}\rfloor $
= RHS

Well done and thanks for participating, kaliprasad!(Yes)

Here's another solution that I want to share with MHB:

It's easy to verify that

$\sqrt{4n+1}<\sqrt{n}+\sqrt{n+1}<\sqrt{4n+3}$ where $n\in N$

Neither $4n+2$ nor $4n+3$ are squares, so $\left\lfloor{\sqrt{4n+1}}\right\rfloor=\left\lfloor{\sqrt{4n+2}}\right\rfloor=\left\lfloor{\sqrt{4n+3}}\right\rfloor$ and the result follows.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
3
Views
2K
Replies
1
Views
1K