Can you prove this result for any $m,n\in\mathbb{Z}^+$?

Click For Summary

Discussion Overview

The thread discusses the proof of two integral results involving trigonometric functions, specifically focusing on the integrals of the form \(\int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx\) and \(\int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx\). Participants explore various methods for proving these results, including induction, contour integration, and series expansions.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Post 1 presents the integrals to be proved and invites participants to use any method, including induction or contour integration.
  • Post 2 provides a detailed proof for the first integral using complex analysis and the binomial theorem, concluding that \(\int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx = \frac{\pi}{2^{n+1}}\).
  • Post 3 asserts the second integral \(\int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx = n\pi\) and offers a proof involving summation and integration of cosine functions.
  • Post 4 reiterates the proof for the second integral and introduces alternative approaches, including a method using differences of integrals and residues.
  • Post 5 expresses approval of the methods discussed, indicating a positive reception of the proofs presented.
  • Post 6 introduces a related result involving sine functions and suggests further exploration of this topic, indicating a connection to the original integrals discussed.

Areas of Agreement / Disagreement

Participants generally agree on the validity of the integral results presented, with multiple methods being discussed for proving them. However, there is no explicit consensus on a single preferred method, as various approaches are explored and appreciated.

Contextual Notes

Some proofs rely on complex analysis and the binomial theorem, while others utilize summation techniques. The discussion includes various assumptions and conditions that may affect the validity of the approaches, such as the treatment of limits and convergence in integrals.

Who May Find This Useful

Readers interested in advanced calculus, mathematical proofs, and techniques in complex analysis may find this discussion particularly useful.

sbhatnagar
Messages
87
Reaction score
0
Prove that:

\[ \int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx =\frac{\pi}{2^{n+1}}\]

\[ \int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx =n\pi \]

where \( n \in \mathbb{N} \). You can use induction, contour integration or any other method you like.
 
Physics news on Phys.org
sbhatnagar said:
\[ \int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx =\frac{\pi}{2^{n+1}}\]

First note that \[ \displaystyle\int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx = \Re \{ \int_0^{\pi/2} e^{i\cdot n\cdot x} \cos^n(x) dx \}\]

Now since $\cos(x) = \frac{e^{i\cdot x} + e^{-i\cdot x}}{2}$ we find: \[ \displaystyle\int_0^{\pi/2} e^{i\cdot n\cdot x} \cos^n(x) dx = \int_0^{\pi/2} e^{i\cdot n\cdot x} \left(\frac{e^{i\cdot x} + e^{-i\cdot x}}{2} \right)^n dx = \frac{1}{2^n}\cdot \int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx \]

By the binomial theorem: \[\int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx = \int_0^{\pi/2} e^{i\cdot n\cdot x} \left( \sum_{k=0}^n { \binom{n}{k} \cdot e^{i\cdot k \cdot x} \cdot e^{- i\cdot (n-k)\cdot x}}\right) dx = \sum_{k=0}^n { \binom{n}{k} \cdot \int_0^{\pi/2} e^{i\cdot n\cdot x} \cdot e^{i\cdot k \cdot x} \cdot e^{- i\cdot (n-k)\cdot x} dx} = \sum_{k=0}^n { \binom{n}{k} \cdot \int_0^{\pi/2} e^{i\cdot 2k \cdot x} dx} \]

Finally we note that $\int_0^{\pi/2} e^0 dx = \frac{\pi}{2}$ and $\int_0^{\pi/2} e^{i\cdot 2k \cdot x} dx = \frac{e^{i\cdot \pi \cdot k} - 1}{i\cdot 2k} $ for $k> 0$. The latter expression is purely imaginary, thus:
\[\Re\{\int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx\} = \Re\{\sum_{k=0}^n { \binom{n}{k} \cdot \int_0^{\pi/2} e^{i\cdot 2k \cdot x} dx} \} = \frac{\pi}{2} \]
Hence:
\[ \displaystyle\int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx = \Re \{ \int_0^{\pi/2} e^{i\cdot n\cdot x} \cos^n(x) dx \} = \Re\{\frac{1}{2^n}\cdot \int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx \} = \frac{1}{2^n}\Re\{\int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx\} = \frac{\pi}{2^{n+1}} \square\]
 
Last edited:
sbhatnagar said:
\[ \int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx =n\pi \]
$\displaystyle n+2\sum_{k=1}^{n-1}(n-k)\cos{kx} = \frac{1-\cos{nx}}{1-\cos{x}}$, thus $\displaystyle I = \int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} = \int_{0}^{\pi}\left(n+2\sum_{k=1}^{n-1}(n-k)\cos{kx}\right)\;{dx} = n\pi+2\sum_{k=1}^{n-1}(n-k)\int_{0}^{\pi}\cos{kx}\;{dx} = n\pi. $
 
Sherlock said:
$\displaystyle n+2\sum_{k=1}^{n-1}(n-k)\cos{kx} = \frac{1-\cos{nx}}{1-\cos{x}}$, thus $\displaystyle I = \int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} = \int_{0}^{\pi}\left(n+2\sum_{k=1}^{n-1}(n-k)\cos{kx}\right)\;{dx} = n\pi+2\sum_{k=1}^{n-1}(n-k)\int_{0}^{\pi}\cos{kx}\;{dx} = n\pi. $

You have chosen the best method so far. Here are a few more ways to tackle the problem.

Approach 1

Let \( \displaystyle I_n=\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} \).

\( \displaystyle I_{n+1}=\int_{0}^{\pi}\frac{1-\cos{(n+1)x}}{1-\cos{x}}\;{dx} \).

\( \displaystyle I_{n+1}-I_n=\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} -\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx}= \int_{0}^{\pi}\frac{\sin{ \left\{ \frac{(2n+1)x}{2}\right \}}}{\sin{\left( \frac{x}{2}\right)}}dx\).

Let \( \displaystyle J_n= I_{n+1}-I_n= \int_{0}^{\pi}\frac{\sin{ \left\{ \frac{(2n+1)x}{2}\right \}}}{\sin{\left( \frac{x}{2}\right)}}dx\)

\( \displaystyle J_{n+1}= \int_{0}^{\pi}\frac{\sin{ \left\{ \frac{(2n+3)x}{2}\right \}}}{\sin{\left( \frac{x}{2}\right)}}dx\)

\( \displaystyle J_{n+1}-J_n= \int_{0}^{\pi}\frac{\sin{ \left\{ \frac{(2n+3)x}{2}\right \}-\sin\left\{ \frac{(2n+1)x}{2}\right \}}}{\sin{\left( \frac{x}{2}\right)}}dx = 2\int_{0}^{\pi} \cos{\left\{ \frac{(2n+2)x}{2}\right\} }dx = 0\)

This means \( \displaystyle J_{n+1}=J_n=J_{n-1}=\cdots=J_1=\pi\)

So \( \displaystyle J_{n}=\pi \ \Rightarrow I_{n+1}-I_n=\pi \)

So \( I_n = \pi+(n-1)\pi = n\pi \)

Approach 2

\( \displaystyle I_n=\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} \)

Substitute \( z=e^{ix} \).

\( \displaystyle I_n=\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} = \frac{1}{2}\oint_{C} \frac{1-\frac{z^n +z^{-n}}{2}}{1-\frac{z +z^{-1}}{2}}\frac{dz}{iz}=\frac{1}{2}\oint_{C}\frac{(z^n -1)^2}{iz^n (z-1)^2}dz\)

where C is the unit circle.

Let \( \displaystyle f(z)=\frac{(z^n -1)^2}{iz^n (z-1)^2} \)

\( f(z) \) has pole at \( z=0 \).

\(\displaystyle \text{Res}_{z=0}f(z)=\frac{n}{i} \)

So \(\displaystyle I_n= \pi i\displaystyle \text{Res}_{z=0}f(z)=\frac{n\pi i}{i} =n\pi \)
 
Last edited:
Very nice! (Yes)
sbhatnagar said:
You have chosen the best method so far.
It took me ages to come up with that! (Sleepy)
 
sbhatnagar said:
\[ \int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx =n\pi \]

Here is a related result you guys might be interested in trying out: \[ \displaystyle\int_0^\pi \left(\frac{\sin(n\cdot x)}{\sin(x)}\right)^m = \pi \cdot [x^{m\cdot (n-1)}] \left\{ \left( \sum_{k=0}^{n-1} x^{2\cdot k} \right)^m\right\}\]
for $m,n\in\mathbb{Z}^+$

Notation: $[x^a]\{p(x)\}$ is the coefficient of $x^a$ in $p(x)$.

(Wink)

So for example, for $m=2$ in particular we get: $\displaystyle\int_0^\pi \left(\frac{\sin(n\cdot x)}{\sin(x)}\right)^2 = \pi \cdot [x^{2\cdot (n-1)}] \left\{ \left( \sum_{k=0}^{n-1} x^{2\cdot k} \right)^m\right\}= \pi \cdot [x^{n-1}] \left\{ \left( \sum_{k=0}^{n-1} x^k \right)^2\right\} = \pi \cdot n$ because for each $k\in \{0,1,..,n-1\}$ there is exactly one $j\in \{0,1,...,n-1\}$ such that $k+j = n-1$.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K