MHB Can you prove this result for any $m,n\in\mathbb{Z}^+$?

AI Thread Summary
The discussion focuses on proving two integral results involving trigonometric functions for positive integers \( n \). The first result states that the integral of \( \cos(nx) \cos^n(x) \) from 0 to \( \pi/2 \) equals \( \frac{\pi}{2^{n+1}} \), which is derived using complex exponentials and the binomial theorem. The second result asserts that the integral of \( \frac{1-\cos(nx)}{1-\cos(x)} \) from 0 to \( \pi \) equals \( n\pi \), with various approaches discussed, including induction and contour integration. Both results are confirmed through detailed calculations and alternative methods, showcasing the versatility in tackling such problems. The thread concludes with a related integral result that invites further exploration.
sbhatnagar
Messages
87
Reaction score
0
Prove that:

\[ \int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx =\frac{\pi}{2^{n+1}}\]

\[ \int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx =n\pi \]

where \( n \in \mathbb{N} \). You can use induction, contour integration or any other method you like.
 
Mathematics news on Phys.org
sbhatnagar said:
\[ \int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx =\frac{\pi}{2^{n+1}}\]

First note that \[ \displaystyle\int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx = \Re \{ \int_0^{\pi/2} e^{i\cdot n\cdot x} \cos^n(x) dx \}\]

Now since $\cos(x) = \frac{e^{i\cdot x} + e^{-i\cdot x}}{2}$ we find: \[ \displaystyle\int_0^{\pi/2} e^{i\cdot n\cdot x} \cos^n(x) dx = \int_0^{\pi/2} e^{i\cdot n\cdot x} \left(\frac{e^{i\cdot x} + e^{-i\cdot x}}{2} \right)^n dx = \frac{1}{2^n}\cdot \int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx \]

By the binomial theorem: \[\int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx = \int_0^{\pi/2} e^{i\cdot n\cdot x} \left( \sum_{k=0}^n { \binom{n}{k} \cdot e^{i\cdot k \cdot x} \cdot e^{- i\cdot (n-k)\cdot x}}\right) dx = \sum_{k=0}^n { \binom{n}{k} \cdot \int_0^{\pi/2} e^{i\cdot n\cdot x} \cdot e^{i\cdot k \cdot x} \cdot e^{- i\cdot (n-k)\cdot x} dx} = \sum_{k=0}^n { \binom{n}{k} \cdot \int_0^{\pi/2} e^{i\cdot 2k \cdot x} dx} \]

Finally we note that $\int_0^{\pi/2} e^0 dx = \frac{\pi}{2}$ and $\int_0^{\pi/2} e^{i\cdot 2k \cdot x} dx = \frac{e^{i\cdot \pi \cdot k} - 1}{i\cdot 2k} $ for $k> 0$. The latter expression is purely imaginary, thus:
\[\Re\{\int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx\} = \Re\{\sum_{k=0}^n { \binom{n}{k} \cdot \int_0^{\pi/2} e^{i\cdot 2k \cdot x} dx} \} = \frac{\pi}{2} \]
Hence:
\[ \displaystyle\int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx = \Re \{ \int_0^{\pi/2} e^{i\cdot n\cdot x} \cos^n(x) dx \} = \Re\{\frac{1}{2^n}\cdot \int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx \} = \frac{1}{2^n}\Re\{\int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx\} = \frac{\pi}{2^{n+1}} \square\]
 
Last edited:
sbhatnagar said:
\[ \int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx =n\pi \]
$\displaystyle n+2\sum_{k=1}^{n-1}(n-k)\cos{kx} = \frac{1-\cos{nx}}{1-\cos{x}}$, thus $\displaystyle I = \int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} = \int_{0}^{\pi}\left(n+2\sum_{k=1}^{n-1}(n-k)\cos{kx}\right)\;{dx} = n\pi+2\sum_{k=1}^{n-1}(n-k)\int_{0}^{\pi}\cos{kx}\;{dx} = n\pi. $
 
Sherlock said:
$\displaystyle n+2\sum_{k=1}^{n-1}(n-k)\cos{kx} = \frac{1-\cos{nx}}{1-\cos{x}}$, thus $\displaystyle I = \int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} = \int_{0}^{\pi}\left(n+2\sum_{k=1}^{n-1}(n-k)\cos{kx}\right)\;{dx} = n\pi+2\sum_{k=1}^{n-1}(n-k)\int_{0}^{\pi}\cos{kx}\;{dx} = n\pi. $

You have chosen the best method so far. Here are a few more ways to tackle the problem.

Approach 1

Let \( \displaystyle I_n=\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} \).

\( \displaystyle I_{n+1}=\int_{0}^{\pi}\frac{1-\cos{(n+1)x}}{1-\cos{x}}\;{dx} \).

\( \displaystyle I_{n+1}-I_n=\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} -\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx}= \int_{0}^{\pi}\frac{\sin{ \left\{ \frac{(2n+1)x}{2}\right \}}}{\sin{\left( \frac{x}{2}\right)}}dx\).

Let \( \displaystyle J_n= I_{n+1}-I_n= \int_{0}^{\pi}\frac{\sin{ \left\{ \frac{(2n+1)x}{2}\right \}}}{\sin{\left( \frac{x}{2}\right)}}dx\)

\( \displaystyle J_{n+1}= \int_{0}^{\pi}\frac{\sin{ \left\{ \frac{(2n+3)x}{2}\right \}}}{\sin{\left( \frac{x}{2}\right)}}dx\)

\( \displaystyle J_{n+1}-J_n= \int_{0}^{\pi}\frac{\sin{ \left\{ \frac{(2n+3)x}{2}\right \}-\sin\left\{ \frac{(2n+1)x}{2}\right \}}}{\sin{\left( \frac{x}{2}\right)}}dx = 2\int_{0}^{\pi} \cos{\left\{ \frac{(2n+2)x}{2}\right\} }dx = 0\)

This means \( \displaystyle J_{n+1}=J_n=J_{n-1}=\cdots=J_1=\pi\)

So \( \displaystyle J_{n}=\pi \ \Rightarrow I_{n+1}-I_n=\pi \)

So \( I_n = \pi+(n-1)\pi = n\pi \)

Approach 2

\( \displaystyle I_n=\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} \)

Substitute \( z=e^{ix} \).

\( \displaystyle I_n=\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} = \frac{1}{2}\oint_{C} \frac{1-\frac{z^n +z^{-n}}{2}}{1-\frac{z +z^{-1}}{2}}\frac{dz}{iz}=\frac{1}{2}\oint_{C}\frac{(z^n -1)^2}{iz^n (z-1)^2}dz\)

where C is the unit circle.

Let \( \displaystyle f(z)=\frac{(z^n -1)^2}{iz^n (z-1)^2} \)

\( f(z) \) has pole at \( z=0 \).

\(\displaystyle \text{Res}_{z=0}f(z)=\frac{n}{i} \)

So \(\displaystyle I_n= \pi i\displaystyle \text{Res}_{z=0}f(z)=\frac{n\pi i}{i} =n\pi \)
 
Last edited:
Very nice! (Yes)
sbhatnagar said:
You have chosen the best method so far.
It took me ages to come up with that! (Sleepy)
 
sbhatnagar said:
\[ \int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx =n\pi \]

Here is a related result you guys might be interested in trying out: \[ \displaystyle\int_0^\pi \left(\frac{\sin(n\cdot x)}{\sin(x)}\right)^m = \pi \cdot [x^{m\cdot (n-1)}] \left\{ \left( \sum_{k=0}^{n-1} x^{2\cdot k} \right)^m\right\}\]
for $m,n\in\mathbb{Z}^+$

Notation: $[x^a]\{p(x)\}$ is the coefficient of $x^a$ in $p(x)$.

(Wink)

So for example, for $m=2$ in particular we get: $\displaystyle\int_0^\pi \left(\frac{\sin(n\cdot x)}{\sin(x)}\right)^2 = \pi \cdot [x^{2\cdot (n-1)}] \left\{ \left( \sum_{k=0}^{n-1} x^{2\cdot k} \right)^m\right\}= \pi \cdot [x^{n-1}] \left\{ \left( \sum_{k=0}^{n-1} x^k \right)^2\right\} = \pi \cdot n$ because for each $k\in \{0,1,..,n-1\}$ there is exactly one $j\in \{0,1,...,n-1\}$ such that $k+j = n-1$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top