Can you prove this result for any $m,n\in\mathbb{Z}^+$?

Click For Summary
SUMMARY

The discussion focuses on proving two integral results involving trigonometric functions for natural numbers \( n \): \( \int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx = \frac{\pi}{2^{n+1}} \) and \( \int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx = n\pi \). The proofs utilize methods such as contour integration and the binomial theorem. The first integral is shown through the real part of a complex integral, while the second is derived using properties of sine and cosine integrals.

PREREQUISITES
  • Understanding of integral calculus, particularly trigonometric integrals
  • Familiarity with complex analysis, specifically contour integration
  • Knowledge of the binomial theorem and its applications in integration
  • Basic understanding of real and imaginary parts of complex functions
NEXT STEPS
  • Study the application of the binomial theorem in integration techniques
  • Learn about contour integration methods in complex analysis
  • Explore advanced trigonometric integral techniques, such as Fourier series
  • Investigate related integral results involving sine and cosine functions
USEFUL FOR

Mathematicians, students of advanced calculus, and anyone interested in integral calculus and complex analysis will benefit from this discussion.

sbhatnagar
Messages
87
Reaction score
0
Prove that:

\[ \int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx =\frac{\pi}{2^{n+1}}\]

\[ \int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx =n\pi \]

where \( n \in \mathbb{N} \). You can use induction, contour integration or any other method you like.
 
Physics news on Phys.org
sbhatnagar said:
\[ \int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx =\frac{\pi}{2^{n+1}}\]

First note that \[ \displaystyle\int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx = \Re \{ \int_0^{\pi/2} e^{i\cdot n\cdot x} \cos^n(x) dx \}\]

Now since $\cos(x) = \frac{e^{i\cdot x} + e^{-i\cdot x}}{2}$ we find: \[ \displaystyle\int_0^{\pi/2} e^{i\cdot n\cdot x} \cos^n(x) dx = \int_0^{\pi/2} e^{i\cdot n\cdot x} \left(\frac{e^{i\cdot x} + e^{-i\cdot x}}{2} \right)^n dx = \frac{1}{2^n}\cdot \int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx \]

By the binomial theorem: \[\int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx = \int_0^{\pi/2} e^{i\cdot n\cdot x} \left( \sum_{k=0}^n { \binom{n}{k} \cdot e^{i\cdot k \cdot x} \cdot e^{- i\cdot (n-k)\cdot x}}\right) dx = \sum_{k=0}^n { \binom{n}{k} \cdot \int_0^{\pi/2} e^{i\cdot n\cdot x} \cdot e^{i\cdot k \cdot x} \cdot e^{- i\cdot (n-k)\cdot x} dx} = \sum_{k=0}^n { \binom{n}{k} \cdot \int_0^{\pi/2} e^{i\cdot 2k \cdot x} dx} \]

Finally we note that $\int_0^{\pi/2} e^0 dx = \frac{\pi}{2}$ and $\int_0^{\pi/2} e^{i\cdot 2k \cdot x} dx = \frac{e^{i\cdot \pi \cdot k} - 1}{i\cdot 2k} $ for $k> 0$. The latter expression is purely imaginary, thus:
\[\Re\{\int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx\} = \Re\{\sum_{k=0}^n { \binom{n}{k} \cdot \int_0^{\pi/2} e^{i\cdot 2k \cdot x} dx} \} = \frac{\pi}{2} \]
Hence:
\[ \displaystyle\int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx = \Re \{ \int_0^{\pi/2} e^{i\cdot n\cdot x} \cos^n(x) dx \} = \Re\{\frac{1}{2^n}\cdot \int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx \} = \frac{1}{2^n}\Re\{\int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx\} = \frac{\pi}{2^{n+1}} \square\]
 
Last edited:
sbhatnagar said:
\[ \int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx =n\pi \]
$\displaystyle n+2\sum_{k=1}^{n-1}(n-k)\cos{kx} = \frac{1-\cos{nx}}{1-\cos{x}}$, thus $\displaystyle I = \int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} = \int_{0}^{\pi}\left(n+2\sum_{k=1}^{n-1}(n-k)\cos{kx}\right)\;{dx} = n\pi+2\sum_{k=1}^{n-1}(n-k)\int_{0}^{\pi}\cos{kx}\;{dx} = n\pi. $
 
Sherlock said:
$\displaystyle n+2\sum_{k=1}^{n-1}(n-k)\cos{kx} = \frac{1-\cos{nx}}{1-\cos{x}}$, thus $\displaystyle I = \int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} = \int_{0}^{\pi}\left(n+2\sum_{k=1}^{n-1}(n-k)\cos{kx}\right)\;{dx} = n\pi+2\sum_{k=1}^{n-1}(n-k)\int_{0}^{\pi}\cos{kx}\;{dx} = n\pi. $

You have chosen the best method so far. Here are a few more ways to tackle the problem.

Approach 1

Let \( \displaystyle I_n=\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} \).

\( \displaystyle I_{n+1}=\int_{0}^{\pi}\frac{1-\cos{(n+1)x}}{1-\cos{x}}\;{dx} \).

\( \displaystyle I_{n+1}-I_n=\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} -\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx}= \int_{0}^{\pi}\frac{\sin{ \left\{ \frac{(2n+1)x}{2}\right \}}}{\sin{\left( \frac{x}{2}\right)}}dx\).

Let \( \displaystyle J_n= I_{n+1}-I_n= \int_{0}^{\pi}\frac{\sin{ \left\{ \frac{(2n+1)x}{2}\right \}}}{\sin{\left( \frac{x}{2}\right)}}dx\)

\( \displaystyle J_{n+1}= \int_{0}^{\pi}\frac{\sin{ \left\{ \frac{(2n+3)x}{2}\right \}}}{\sin{\left( \frac{x}{2}\right)}}dx\)

\( \displaystyle J_{n+1}-J_n= \int_{0}^{\pi}\frac{\sin{ \left\{ \frac{(2n+3)x}{2}\right \}-\sin\left\{ \frac{(2n+1)x}{2}\right \}}}{\sin{\left( \frac{x}{2}\right)}}dx = 2\int_{0}^{\pi} \cos{\left\{ \frac{(2n+2)x}{2}\right\} }dx = 0\)

This means \( \displaystyle J_{n+1}=J_n=J_{n-1}=\cdots=J_1=\pi\)

So \( \displaystyle J_{n}=\pi \ \Rightarrow I_{n+1}-I_n=\pi \)

So \( I_n = \pi+(n-1)\pi = n\pi \)

Approach 2

\( \displaystyle I_n=\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} \)

Substitute \( z=e^{ix} \).

\( \displaystyle I_n=\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} = \frac{1}{2}\oint_{C} \frac{1-\frac{z^n +z^{-n}}{2}}{1-\frac{z +z^{-1}}{2}}\frac{dz}{iz}=\frac{1}{2}\oint_{C}\frac{(z^n -1)^2}{iz^n (z-1)^2}dz\)

where C is the unit circle.

Let \( \displaystyle f(z)=\frac{(z^n -1)^2}{iz^n (z-1)^2} \)

\( f(z) \) has pole at \( z=0 \).

\(\displaystyle \text{Res}_{z=0}f(z)=\frac{n}{i} \)

So \(\displaystyle I_n= \pi i\displaystyle \text{Res}_{z=0}f(z)=\frac{n\pi i}{i} =n\pi \)
 
Last edited:
Very nice! (Yes)
sbhatnagar said:
You have chosen the best method so far.
It took me ages to come up with that! (Sleepy)
 
sbhatnagar said:
\[ \int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx =n\pi \]

Here is a related result you guys might be interested in trying out: \[ \displaystyle\int_0^\pi \left(\frac{\sin(n\cdot x)}{\sin(x)}\right)^m = \pi \cdot [x^{m\cdot (n-1)}] \left\{ \left( \sum_{k=0}^{n-1} x^{2\cdot k} \right)^m\right\}\]
for $m,n\in\mathbb{Z}^+$

Notation: $[x^a]\{p(x)\}$ is the coefficient of $x^a$ in $p(x)$.

(Wink)

So for example, for $m=2$ in particular we get: $\displaystyle\int_0^\pi \left(\frac{\sin(n\cdot x)}{\sin(x)}\right)^2 = \pi \cdot [x^{2\cdot (n-1)}] \left\{ \left( \sum_{k=0}^{n-1} x^{2\cdot k} \right)^m\right\}= \pi \cdot [x^{n-1}] \left\{ \left( \sum_{k=0}^{n-1} x^k \right)^2\right\} = \pi \cdot n$ because for each $k\in \{0,1,..,n-1\}$ there is exactly one $j\in \{0,1,...,n-1\}$ such that $k+j = n-1$.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K