MHB Can You Solve This Trigonometric Equation for $x$?

Click For Summary
The discussion revolves around solving the trigonometric equation $2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ=\sin 2028^\circ \sin 210^\circ$ for $0 < x < 180^\circ$. Participants engage in deriving solutions and simplifying the equation, with some noting the importance of understanding the sine function's periodicity. A solution was identified that had initially been overlooked, highlighting the collaborative nature of problem-solving in the forum. The conversation emphasizes the significance of careful analysis in trigonometric equations. Overall, the thread showcases effective mathematical discourse and solution-finding.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve for $x$ such that $2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ=\sin 2028^\circ \sin 210^\circ$ for $0\lt x \lt 180^\circ$.
 
Mathematics news on Phys.org
anemone said:
Solve for $x$ such that $2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ=\sin 2028^\circ \sin 210^\circ$ for $0\lt x \lt 180^\circ$.

$$\sin2028^\circ\sin210^\circ=-\dfrac{\sin228^\circ}{2}=\dfrac{\sin48^\circ}{2}$$

$$\sin48^\circ=4\sin(x+30^\circ)\sin16^\circ\sin76^\circ$$

$$3\sin16^\circ-4\sin^316^\circ=4\sin(x+30^\circ)\sin16^\circ\sin76^\circ$$

$$1+2\cos32^\circ=4\sin(x+30^\circ)\sin76^\circ$$

$$1+2\cos32^\circ=2(\cos(x-46^\circ)-\cos(x+106^\circ))$$

$$\text{By inspection, }x=14^\circ$$
 
anemone said:
Solve for $x$ such that $2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ=\sin 2028^\circ \sin 210^\circ$ for $0\lt x \lt 180^\circ$.

$2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ=\sin 2028^\circ \sin 210^\circ$
= $\sin (360^\circ * 5 + 180^\circ + 48^\circ) \sin (180^\circ +30^\circ)$
= $(-\sin\, 48^\circ) (-\sin \,30^\circ)$
= $\dfrac{\sin\,48^\circ}{2}$
= $\dfrac{\sin\, 3*16^\circ}{2}$
= $\dfrac{3\sin\,16^\circ-4\sin ^3 16^\circ}{2}$
hence
$2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ = \sin\,16^\circ \dfrac{3-4\sin ^2 16^\circ}{2}$
or
$4\sin(x+30^\circ)\sin 76^\circ = 3-4\sin ^2 16^\circ$
= $ 1 + 2(1-2\sin^2 16^\circ)$
= $ 1+ 2 \cos\,32^\circ$
= $(2(\cos\,60^\circ +2 \cos\,32^\circ)$
= $ 2 (2 \cos\,46^\circ \cos\,14^\circ)$
= $ 4 \cos\,46^\circ \sin \,76^\circ$
hence
$\sin(x+30^\circ)=\cos\,46^\circ=\sin\,44^\circ$
or $x=14^\circ$

edit there is a solution I missed based on comment below
in the 2nd quadrant
$\sin(x+30^\circ)=\sin\,136^\circ$
so $x= 106^\circ$
 
Last edited:
Thanks both for participating and the solution...but...

Are you certain you haven't missed any solution? (Mmm)
 
anemone said:
Thanks both for participating and the solution...but...

Are you certain you haven't missed any solution? (Mmm)
I missed the solution $x + 30^\circ = 136^\circ$ or $x = 106^\circ$
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 28 ·
Replies
28
Views
3K