Can You Solve This Trigonometric Equation for $x$?

Click For Summary
SUMMARY

The equation to solve is \(2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ=\sin 2028^\circ \sin 210^\circ\) for \(0 < x < 180^\circ\). The solution involves simplifying the right-hand side using known values of sine functions, specifically \(\sin 2028^\circ\) and \(\sin 210^\circ\). The discussion emphasizes the importance of using trigonometric identities to manipulate the equation effectively. Participants provided insights into the solution process, confirming that the equation can be solved within the specified range.

PREREQUISITES
  • Understanding of trigonometric identities and equations
  • Familiarity with the sine function and its properties
  • Knowledge of angle transformations in trigonometry
  • Ability to solve equations within specified intervals
NEXT STEPS
  • Study trigonometric identities, particularly product-to-sum formulas
  • Learn about angle transformations and their applications in solving equations
  • Explore the unit circle and its relevance to sine values
  • Practice solving trigonometric equations with varying intervals
USEFUL FOR

Students and educators in mathematics, particularly those focusing on trigonometry, as well as anyone interested in solving complex trigonometric equations.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve for $x$ such that $2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ=\sin 2028^\circ \sin 210^\circ$ for $0\lt x \lt 180^\circ$.
 
Mathematics news on Phys.org
anemone said:
Solve for $x$ such that $2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ=\sin 2028^\circ \sin 210^\circ$ for $0\lt x \lt 180^\circ$.

$$\sin2028^\circ\sin210^\circ=-\dfrac{\sin228^\circ}{2}=\dfrac{\sin48^\circ}{2}$$

$$\sin48^\circ=4\sin(x+30^\circ)\sin16^\circ\sin76^\circ$$

$$3\sin16^\circ-4\sin^316^\circ=4\sin(x+30^\circ)\sin16^\circ\sin76^\circ$$

$$1+2\cos32^\circ=4\sin(x+30^\circ)\sin76^\circ$$

$$1+2\cos32^\circ=2(\cos(x-46^\circ)-\cos(x+106^\circ))$$

$$\text{By inspection, }x=14^\circ$$
 
anemone said:
Solve for $x$ such that $2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ=\sin 2028^\circ \sin 210^\circ$ for $0\lt x \lt 180^\circ$.

$2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ=\sin 2028^\circ \sin 210^\circ$
= $\sin (360^\circ * 5 + 180^\circ + 48^\circ) \sin (180^\circ +30^\circ)$
= $(-\sin\, 48^\circ) (-\sin \,30^\circ)$
= $\dfrac{\sin\,48^\circ}{2}$
= $\dfrac{\sin\, 3*16^\circ}{2}$
= $\dfrac{3\sin\,16^\circ-4\sin ^3 16^\circ}{2}$
hence
$2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ = \sin\,16^\circ \dfrac{3-4\sin ^2 16^\circ}{2}$
or
$4\sin(x+30^\circ)\sin 76^\circ = 3-4\sin ^2 16^\circ$
= $ 1 + 2(1-2\sin^2 16^\circ)$
= $ 1+ 2 \cos\,32^\circ$
= $(2(\cos\,60^\circ +2 \cos\,32^\circ)$
= $ 2 (2 \cos\,46^\circ \cos\,14^\circ)$
= $ 4 \cos\,46^\circ \sin \,76^\circ$
hence
$\sin(x+30^\circ)=\cos\,46^\circ=\sin\,44^\circ$
or $x=14^\circ$

edit there is a solution I missed based on comment below
in the 2nd quadrant
$\sin(x+30^\circ)=\sin\,136^\circ$
so $x= 106^\circ$
 
Last edited:
Thanks both for participating and the solution...but...

Are you certain you haven't missed any solution? (Mmm)
 
anemone said:
Thanks both for participating and the solution...but...

Are you certain you haven't missed any solution? (Mmm)
I missed the solution $x + 30^\circ = 136^\circ$ or $x = 106^\circ$
 

Similar threads

Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 28 ·
Replies
28
Views
3K