Canonical ensemble <(Delta E)^3> expression

Click For Summary
The discussion focuses on deriving the expression for the canonical ensemble's <(Delta E)^3> using the grand-canonical partition function for an ideal gas. The participants explore the relationship between the partition function and energy expectations, specifically evaluating U and <Delta E^2> through differentiation. There is a suggestion to use an explicit example system to clarify the derivation process. The conversation emphasizes the importance of understanding the underlying principles of statistical mechanics in this context. Overall, the thread highlights the complexities involved in calculating energy fluctuations within canonical ensembles.
GrandsonOfMagnusCarl
Messages
4
Reaction score
0
Homework Statement
Given: <(Delta E)^2> = k_B T^2 C_V

Show: <(Delta E)^3> = k_B^2 [T^4 (d C_V / d T)_V + 2 T^3 C_V]
Relevant Equations
stat mech, thermo
I try involving differentiating ^2 but I get an expression of different proportionality.
 
Physics news on Phys.org
I guess, that's for an ideal gas? If so then just get the grand-canonical partition function
$$Z(\beta,\alpha,V)=V \int_{\mathbb{R}^3} \exp(-\beta p^2/(2m)+\alpha)$$
and evaluate ##U=\langle E \rangle=-\partial_{\beta} Z/Z##, ##\langle \Delta E^2 \rangle=\partial_{\beta}^2 Z/Z- \langle E \rangle^2##,...
 
vanhees71 said:
I guess, that's for an ideal gas? If so then just get the grand-canonical partition function
$$Z(\beta,\alpha,V)=V \int_{\mathbb{R}^3} \exp(-\beta p^2/(2m)+\alpha)$$
and evaluate ##U=\langle E \rangle=-\partial_{\beta} Z/Z##, ##\langle \Delta E^2 \rangle=\partial_{\beta}^2 Z/Z- \langle E \rangle^2##,...
For any canonical ensemble.
Ah, yours would be an approach. I never thought of using an explicit example system to find that resulting expression.
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K