Can't find the determinant of the Jacobian

  • #1
Addez123
199
21
Homework Statement
Determin the determinant for the image (x,y) -> (u,v)
u = a^2 + b^2
v = a^2 - b^2
a = ln(xy)
b = ln(x/y)
Relevant Equations
Matrices
The way I approach it was, we're looking for det(H) where H = h(u, v)
$$H = \begin{bmatrix}
du/da & du/db \\
dv/da & dv/db
\end{bmatrix} *
\begin{bmatrix}
da/dx & da/dy \\
db/dx & db/dy
\end{bmatrix}$$

I just multiply those two matrices and then get the determinant. The answer is
$$16((ln x)^2 - (ln y)^2)/(xy)$$

But all I get is
$$16*ln(xy) * ln(x/y)/(xy)$$

I've counted it twice so if something is wrong its the matrices or the way I think.
 
Physics news on Phys.org
  • #2
You have the same function for ##u## and ##v##.
 
  • #3
PeroK said:
You have the same function for ##u## and ##v##.
sorry! v was suppose to have a minus sign in it.
 
  • #4
Addez123 said:
I just multiply those two matrices and then get the determinant. The answer is
$$16((ln x)^2 - (ln y)^2)/(xy)$$

But all I get is
$$16*ln(xy) * ln(x/y)/(xy)$$
Are they different?
 
  • #5
Unless ln(xy) = 2 they are, right?
 
  • #6
Addez123 said:
Unless ln(xy) = 2 they are, right?
If you have a spreadsheet on your computer, why not plug in some values for ##x## and ##y## and see?
 
  • #7
And/or, do a bit of algebra.
 
  • #8
I plugged both equations into wolfram, they are not the same.

Trying to make my equation look like the first equation results in this

$$16((ln x)^{ln(xy)} - (ln y)^{ln(xy)})/(xy)$$
which is not the same.
 
  • #9
Addez123 said:
I plugged both equations into wolfram, they are not the same.

Trying to make my equation look like the first equation results in this

$$16((ln x)^{ln(xy)} - (ln y)^{ln(xy)})/(xy)$$
which is not the same.
Give me an example of ##x, y## where: $$(ln x)^2 - (ln y)^2 \ne ln(xy)ln(x/y)$$
 
  • Skeptical
Likes Addez123
  • #10
Did you try simplifying a bit by using logarithm relations such as ln(xy) = ln(x) ln(y)?
 
  • #11
Orodruin said:
Did you try simplifying a bit by using logarithm relations such as ln(xy) = ln(x) ln(y)?
I hope that one isn't in your book!
 
  • Like
Likes Addez123
  • #12
PeroK said:
Give me an example of ##x, y## where: $$(ln x)^2 - (ln y)^2 \ne ln(xy)ln(x/y)$$
Wow. Turns out it was the same!
Turning ln(xy) = ln(x) + ln(y)
and ln(x/y) = ln(x) - ln(y)
and then just multiplying gives the correct answer.

Wierd I didnt see that!
Thanks!
 
Back
Top