- #1

- 21

- 0

## Main Question or Discussion Point

sorry for starting yet another one of these threads :p

As far as I know, cantor's diagonal argument merely says-

if you have a list of n real numbers, then you can always find a real number not belonging to the list.

But this just means that you can't set up a 1-1 between the reals, and any finite set.

How does this show there is no 1-1 between reals, and the integers?

As far as I know, cantor's diagonal argument merely says-

if you have a list of n real numbers, then you can always find a real number not belonging to the list.

But this just means that you can't set up a 1-1 between the reals, and any finite set.

How does this show there is no 1-1 between reals, and the integers?