MHB Cantor ternary set, construction

Dustinsfl
Messages
2,217
Reaction score
5
Explain why all the end points of the closed intervals that comprise $C_n$ are in the Cantor set $C_n$.

I understand why this is true but I don't know how to explain it.
 
Last edited by a moderator:
Physics news on Phys.org
dwsmith said:
Explain why all the end points of the closed intervals that comprise $C_n$ are in the Cantor set $C_n$.

I understand why this is true but I don't know how to explain it.

Because at each step the open middle third of each remaining intervals is removed, which always leaves the end points of the intervals at the earlier stage in the set, and as end points of the new intervals (one of the end points the other for each interval is created at each step).

CB
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top