Capacitance of infinitely long coaxial cylinders of elliptical section

Click For Summary
SUMMARY

The discussion focuses on the capacitance of infinitely long coaxial cylinders with elliptical cross-sections. An inequality for capacitance, given by $$\frac{2\pi\epsilon_0}{\log\left(\frac{b_1b_2}{a_1^2}\right)}\leq C \leq \frac{2\pi\epsilon_0}{\log\left(\frac{a_1a_2}{b_1^2}\right)}$$, has been established, but the exact value remains elusive. The Joukowski conformal transformation is recommended for mapping the elliptical geometry to a circular one, facilitating capacitance calculations in the transformed plane. The discussion also references a specific paper (10.2528/PIER03072303) for further insights.

PREREQUISITES
  • Understanding of capacitance in cylindrical geometries
  • Familiarity with Joukowski conformal transformation
  • Knowledge of complex variables and mapping techniques
  • Basic principles of electrostatics and dielectric materials
NEXT STEPS
  • Research the Joukowski conformal transformation in detail
  • Study the derivation of capacitance for elliptical cylinders
  • Examine the paper referenced (10.2528/PIER03072303) for related methodologies
  • Explore numerical methods for solving capacitance problems in complex geometries
USEFUL FOR

Mathematicians, electrical engineers, and physicists interested in electrostatics, particularly those working on capacitance calculations involving non-circular geometries.

Rlwe
Messages
18
Reaction score
1
Homework Statement
Find the capacitance per unit length between two infinitely long coaxial cylinders of elliptical section given by eqs. $$\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1$$ $$\frac{x^2}{a_2^2}+\frac{y^2}{b_2^2}=1$$ where $$\frac{a_2}{a_1}=\frac{b_2}{b_1}$$ and $$b_1\geq a_1\,,\quad b_2\geq a_2\,,\quad a_2>a_1$$
Relevant Equations
Laplace equation in 2D
I've been able to prove the following inequality $$\frac{2\pi\epsilon_0}{\log\left(\frac{b_1b_2}{a_1^2}\right)}\leq C \leq \frac{2\pi\epsilon_0}{\log\left(\frac{a_1a_2}{b_1^2}\right)}$$ but have no clue how to obtain exact value. Can someone check whether this inequality is correct and show how to obtain the exact value?
 
Physics news on Phys.org
Please show us your work.
 
vela said:
Please show us your work.
Sorry, it isn't really a homework (maybe I shouldn't have posted it under HW help, sorry) but a problem I invented. I found this paper (p.10) which deals with a system of confocal ellipses and uses special system of coords to solve it. However, I couldn't find any reference that deals with similar ellipses.
 
Rlwe said:
it isn't really a homework (maybe I shouldn't have posted it under HW help, sorry) but a problem I invented.
It is still schoolwork-like, so you did the right thing to post it in the schoolwork forums. :smile:
 
I suggest you use the Joukowski conformal transformation to map ellipses in the ##z## plane (##z=x+iy##) to disks in the ##w## plane (##w=u+iv##), then compute the capacitance in the ##w## plane with cylindrical symmetry (not hard). The Joukowski transformation is,
$$
z=\alpha w + \frac{\beta}{w}
$$
$$
z_{1,2}=x_{1,2}+iy_{1,2}=\alpha_{1,2} (u_{1,2}+iv_{1,2}) + \beta_{1,2} \frac{u_{1,2}-iv_{1,2}}{R_{1,2}^2}
$$
where ##R_{1,2}## are the radii of the disks in the ##w## plane. Equating real and imaginary parts, the equation ## u^2_{1,2} + v^2_{1,2}=R^2_{1,2}## becomes,
$$
\frac{x^2_{1,2} }{\alpha_{1,2} + \frac{\beta_{1,2} }{R^2_{1,2}}} +\frac{y^2_{1,2} }{\alpha_{1,2} - \frac{\beta_{1,2} }{R^2_{1,2}}}=1
$$
where,
$$
a_{1,2}=|\alpha_{1,2} + \frac{\beta_{1,2} }{R^2_{1,2}} |
$$
$$
b_{1,2}=|\alpha_{1,2} - \frac{\beta_{1,2} }{R^2_{1,2}} |
$$
You will have to choose a scale for your problem i.e. ##a_2=\gamma a_1## and ##b_2=\gamma b_1##. From this and the given conditions and constraints you can compute the ratio ##\frac{R_2}{R_1}##.
 
  • Informative
  • Like
Likes   Reactions: vanhees71 and berkeman

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 1 ·
Replies
1
Views
14K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K