Capacitance of infinitely long coaxial cylinders of elliptical section

Click For Summary

Homework Help Overview

The discussion revolves around the capacitance of infinitely long coaxial cylinders with elliptical cross-sections. The original poster presents an inequality related to capacitance but seeks guidance on deriving the exact value, indicating a theoretical exploration rather than a standard homework problem.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants inquire about the correctness of the presented inequality and request the original poster to share their work. There is a suggestion to utilize the Joukowski conformal transformation to facilitate the analysis of the problem.

Discussion Status

The discussion is ongoing, with participants providing suggestions and resources. Some participants express uncertainty about the appropriateness of the thread's placement in the homework help section, while others affirm its relevance to schoolwork-like problems.

Contextual Notes

The original poster mentions that the problem is self-invented and references a paper discussing confocal ellipses, indicating a potential gap in available literature on similar elliptical configurations.

Rlwe
Messages
18
Reaction score
1
Homework Statement
Find the capacitance per unit length between two infinitely long coaxial cylinders of elliptical section given by eqs. $$\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1$$ $$\frac{x^2}{a_2^2}+\frac{y^2}{b_2^2}=1$$ where $$\frac{a_2}{a_1}=\frac{b_2}{b_1}$$ and $$b_1\geq a_1\,,\quad b_2\geq a_2\,,\quad a_2>a_1$$
Relevant Equations
Laplace equation in 2D
I've been able to prove the following inequality $$\frac{2\pi\epsilon_0}{\log\left(\frac{b_1b_2}{a_1^2}\right)}\leq C \leq \frac{2\pi\epsilon_0}{\log\left(\frac{a_1a_2}{b_1^2}\right)}$$ but have no clue how to obtain exact value. Can someone check whether this inequality is correct and show how to obtain the exact value?
 
Physics news on Phys.org
Please show us your work.
 
vela said:
Please show us your work.
Sorry, it isn't really a homework (maybe I shouldn't have posted it under HW help, sorry) but a problem I invented. I found this paper (p.10) which deals with a system of confocal ellipses and uses special system of coords to solve it. However, I couldn't find any reference that deals with similar ellipses.
 
Rlwe said:
it isn't really a homework (maybe I shouldn't have posted it under HW help, sorry) but a problem I invented.
It is still schoolwork-like, so you did the right thing to post it in the schoolwork forums. :smile:
 
I suggest you use the Joukowski conformal transformation to map ellipses in the ##z## plane (##z=x+iy##) to disks in the ##w## plane (##w=u+iv##), then compute the capacitance in the ##w## plane with cylindrical symmetry (not hard). The Joukowski transformation is,
$$
z=\alpha w + \frac{\beta}{w}
$$
$$
z_{1,2}=x_{1,2}+iy_{1,2}=\alpha_{1,2} (u_{1,2}+iv_{1,2}) + \beta_{1,2} \frac{u_{1,2}-iv_{1,2}}{R_{1,2}^2}
$$
where ##R_{1,2}## are the radii of the disks in the ##w## plane. Equating real and imaginary parts, the equation ## u^2_{1,2} + v^2_{1,2}=R^2_{1,2}## becomes,
$$
\frac{x^2_{1,2} }{\alpha_{1,2} + \frac{\beta_{1,2} }{R^2_{1,2}}} +\frac{y^2_{1,2} }{\alpha_{1,2} - \frac{\beta_{1,2} }{R^2_{1,2}}}=1
$$
where,
$$
a_{1,2}=|\alpha_{1,2} + \frac{\beta_{1,2} }{R^2_{1,2}} |
$$
$$
b_{1,2}=|\alpha_{1,2} - \frac{\beta_{1,2} }{R^2_{1,2}} |
$$
You will have to choose a scale for your problem i.e. ##a_2=\gamma a_1## and ##b_2=\gamma b_1##. From this and the given conditions and constraints you can compute the ratio ##\frac{R_2}{R_1}##.
 
  • Informative
  • Like
Likes   Reactions: vanhees71 and berkeman

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 1 ·
Replies
1
Views
14K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K