Capacitive and Inductive Coupled EMI model

AI Thread Summary
The discussion focuses on creating a circuit schematic that effectively represents both inductive and capacitive coupling paths for EMI modeling, particularly from a MOSFET switching on a DC bus to nearby circuits. The user has extracted parasitics and has separate netlists for capacitive and inductive coupling but seeks guidance on combining them into one model. Suggestions include defining nodes on the EMI generator and sensitive target to create a scattering matrix, as well as using transformers to simulate induced currents. The conversation emphasizes that shared impedance coupling may dominate crosstalk and that further analysis could benefit from reviewing the schematic and layout. Overall, combining both coupling types in a single model is considered advantageous if the loads and sources are accurately represented.
newengr
Messages
21
Reaction score
0
TL;DR Summary
I would like to create an EMI equivalent circuit model considering both inductive and capacitive coupling in one.
I am new to EMI modeling and just looking into it. I would like to create a circuit schematic to represent the inductive and capacitive coupling paths in one schematic. All that I've been able to find online is references discussing each independently. Is this the best approach if you want to consider both? Any references or suggestions for modeling both together would be helpful. Or if there's a reason not to, that would be helpful too.
 
Engineering news on Phys.org
We need a little more information.
What is the source of the EMI ?
What is the target ?

Directional couplers and short antennas can be hard to express on a circuit schematic.
 
The source of the EMI is a MOSFET switching on a DC bus. The target are nearby circuits referenced to a the midpoint of the bus or the -DC rail; both cases work. I extracted the parasitics which include capacitive coupling and inductive coupling terms using Q3D. I have the netlists for capacitive and inductive separate so I can draw the circuit for each. The challenge for me is trying to combine them.

I think combining them would be best if I can model my loads and source well enough. Then my circuit would have the appropriate voltage and current waveforms. Or is it better (or equivalent) to just take my voltage waveform and use it to analyze capacitive coupling the use my current waveform to look at inductive coupling? O and I'm neglecting radiated coupling at this point.
 
What form does the mutual C and L data take.
Does it employ nodes similar to a spice model?

If you can define the nodes on the EMI generator, and the nodes on the sensitive target, then you might define a scattering matrix that combines the reactive currents being delivered to the target.
Induced currents would appear between two nodes and could be simulated using transformers with coupling coefficients. Capacitive currents due to voltage changes would be between nodes. The method of moments might be considered.

I don't think EM radiation will be important for such a small space. It will all be near field.
 
newengr said:
The source of the EMI is a MOSFET switching on a DC bus. The target are nearby circuits referenced to a the midpoint of the bus or the -DC rail
Probably shared impedance coupling will dominate the crosstalk, but without seeing your schematic and layout, it's hard to know. Can you share the schematic and layout?
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top