Capacitive and Inductive Coupled EMI model

Click For Summary
SUMMARY

The discussion focuses on creating a circuit schematic to model both inductive and capacitive coupling paths in electromagnetic interference (EMI) scenarios, specifically involving a MOSFET switching on a DC bus. The user has extracted parasitics using Q3D and possesses separate netlists for capacitive and inductive coupling. The conversation highlights the importance of defining nodes on the EMI generator and sensitive targets to create a scattering matrix for accurate simulation. Additionally, shared impedance coupling is identified as a potential dominant factor in crosstalk.

PREREQUISITES
  • Understanding of EMI modeling concepts
  • Familiarity with Q3D for parasitic extraction
  • Knowledge of circuit schematic design
  • Basic principles of capacitive and inductive coupling
NEXT STEPS
  • Research how to define nodes for EMI generators and targets in circuit schematics
  • Explore the method of moments for EMI simulation
  • Learn about scattering matrices and their application in EMI analysis
  • Investigate shared impedance coupling and its effects on crosstalk in circuit designs
USEFUL FOR

Electrical engineers, circuit designers, and EMI specialists looking to understand and model inductive and capacitive coupling in electronic circuits.

newengr
Messages
21
Reaction score
0
TL;DR
I would like to create an EMI equivalent circuit model considering both inductive and capacitive coupling in one.
I am new to EMI modeling and just looking into it. I would like to create a circuit schematic to represent the inductive and capacitive coupling paths in one schematic. All that I've been able to find online is references discussing each independently. Is this the best approach if you want to consider both? Any references or suggestions for modeling both together would be helpful. Or if there's a reason not to, that would be helpful too.
 
Engineering news on Phys.org
We need a little more information.
What is the source of the EMI ?
What is the target ?

Directional couplers and short antennas can be hard to express on a circuit schematic.
 
The source of the EMI is a MOSFET switching on a DC bus. The target are nearby circuits referenced to a the midpoint of the bus or the -DC rail; both cases work. I extracted the parasitics which include capacitive coupling and inductive coupling terms using Q3D. I have the netlists for capacitive and inductive separate so I can draw the circuit for each. The challenge for me is trying to combine them.

I think combining them would be best if I can model my loads and source well enough. Then my circuit would have the appropriate voltage and current waveforms. Or is it better (or equivalent) to just take my voltage waveform and use it to analyze capacitive coupling the use my current waveform to look at inductive coupling? O and I'm neglecting radiated coupling at this point.
 
What form does the mutual C and L data take.
Does it employ nodes similar to a spice model?

If you can define the nodes on the EMI generator, and the nodes on the sensitive target, then you might define a scattering matrix that combines the reactive currents being delivered to the target.
Induced currents would appear between two nodes and could be simulated using transformers with coupling coefficients. Capacitive currents due to voltage changes would be between nodes. The method of moments might be considered.

I don't think EM radiation will be important for such a small space. It will all be near field.
 
newengr said:
The source of the EMI is a MOSFET switching on a DC bus. The target are nearby circuits referenced to a the midpoint of the bus or the -DC rail
Probably shared impedance coupling will dominate the crosstalk, but without seeing your schematic and layout, it's hard to know. Can you share the schematic and layout?
 
Most likely this can only be answered by an "old timer". I am making measurements on an uA709 op amp (metal can). I would like to calculate the frequency rolloff curves (I can measure them). I assume the compensation is via the miller effect. To do the calculations I would need to know the gain of the transistors and the effective resistance seen at the compensation terminals, not including the values I put there. Anyone know those values?

Similar threads

Replies
1
Views
3K
Replies
20
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
6K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 26 ·
Replies
26
Views
5K