CaptainBlack said:
I think this is a bit tedious and can be hard labour, but:
Given that \(\cos(36^\circ )=\frac{1}{4}(1+\sqrt{5})\) find the exact value of \(\tan^2(18^\circ) \tan^2(54^\circ)\).
CB
\[\cos 2\theta=2\cos^{2}\theta-1\Rightarrow\cos^{2}\theta=\frac{1+\cos 2\theta}{2}~~~~~(1)\]
\[\cos 2\theta=2\cos^{2}\theta-1\Rightarrow\cos^{2}\theta=\frac{1+\cos 2\theta}{2}~~~~~(2)\]
By (1) and (2),
\[\tan\theta=\pm\sqrt{\frac{1-\cos 2\theta}{1+\cos 2\theta}}~~~~~(A)\]
Also by the Triple angle formula for tangents,
\[\tan 3\theta = \frac{3 \tan\theta - \tan^3\theta}{1 - 3 \tan^2\theta}\]
Substituting \(\tan\theta=\sqrt{\frac{1-\cos 2\theta}{1+\cos 2\theta}}\) and simplifying yields,
\[\tan 3\theta=\pm\frac{\sqrt{1-\cos 2\theta}}{\sqrt{1+\cos 2\theta}}\left(\frac{2\cos 2\theta+1}{2\cos 2\theta-1}\right)~~~~~(B)\]
By (A) and (B),
\[\tan^{2}\theta\tan^{2}3\theta=\left(\frac{1-\cos 2\theta}{1+\cos 2\theta}\right)^2\left(\frac{2\cos 2\theta+1}{2\cos 2\theta-1}\right)^2\]
Let \(\theta=18^{0}\),
\[\tan^{2}(18^{0})\tan^{2}(54^{0})=\left(\frac{1-\cos (36^{0})}{1+\cos (36^{0})}\right)^2\left(\frac{2\cos (36^{0})+1}{2\cos (36^{0})-1}\right)^2\]
Since \(\cos (36^{0})=\frac{1}{4}(1+\sqrt{5})\),
\[\tan^{2}(18^{0})\tan^{2}(54^{0})=\left(\frac{3-\sqrt{5}}{5+\sqrt{5}}\right)^{2}\left(\frac{3+ \sqrt{5}}{\sqrt{5}-1}\right)^{2}\]
\[\Rightarrow \tan^{2}(18^{0})\tan^{2}(54^{0})=\frac{1}{5}\left(\frac{9-5}{5-1}\right)^2\]
\[\therefore \tan^{2}(18^{0})\tan^{2}(54^{0})=0.2\]