CaptainBlacks Problem of the Week #2

  • Context: MHB 
  • Thread starter Thread starter CaptainBlack
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on calculating the exact value of \(\tan^2(18^\circ) \tan^2(54^\circ)\) given that \(\cos(36^\circ) = \frac{1}{4}(1+\sqrt{5})\). Two solutions are presented: the first utilizes the tangent half-angle and triple angle formulas, while the second employs the sine and cosine relationships. Both methods conclusively yield the result of \(\tan^2(18^\circ) \tan^2(54^\circ) = \frac{1}{5}\).

PREREQUISITES
  • Understanding of trigonometric identities, specifically tangent and cosine functions.
  • Familiarity with half-angle and triple angle formulas in trigonometry.
  • Basic algebraic manipulation skills for simplifying trigonometric expressions.
  • Knowledge of the properties of special angles, particularly \(18^\circ\) and \(54^\circ\).
NEXT STEPS
  • Explore the derivation of the tangent half-angle formula in detail.
  • Study the application of the triple angle formula for tangent in various problems.
  • Learn about the geometric interpretations of trigonometric identities.
  • Investigate the use of computer algebra systems like Maxima for solving complex trigonometric equations.
USEFUL FOR

Mathematicians, students studying trigonometry, and educators looking for methods to solve trigonometric problems effectively.

CaptainBlack
Messages
801
Reaction score
0
I think this is a bit tedious and can be hard labour, but:

Given that \(\cos(36^\circ )=\frac{1}{4}(1+\sqrt{5})\) find the exact value of \(\tan^2(18^\circ) \tan^2(54^\circ)\).

CB
 
Last edited:
Mathematics news on Phys.org
CaptainBlack said:
I think this is a bit tedious and can be hard labour, but:

Given that \(\cos(36^\circ )=\frac{1}{4}(1+\sqrt{5})\) find the exact value of \(\tan^2(18^\circ) \tan^2(54^\circ)\).

CB

\[\cos 2\theta=2\cos^{2}\theta-1\Rightarrow\cos^{2}\theta=\frac{1+\cos 2\theta}{2}~~~~~(1)\]

\[\cos 2\theta=2\cos^{2}\theta-1\Rightarrow\cos^{2}\theta=\frac{1+\cos 2\theta}{2}~~~~~(2)\]

By (1) and (2),

\[\tan\theta=\pm\sqrt{\frac{1-\cos 2\theta}{1+\cos 2\theta}}~~~~~(A)\]

Also by the Triple angle formula for tangents,

\[\tan 3\theta = \frac{3 \tan\theta - \tan^3\theta}{1 - 3 \tan^2\theta}\]

Substituting \(\tan\theta=\sqrt{\frac{1-\cos 2\theta}{1+\cos 2\theta}}\) and simplifying yields,

\[\tan 3\theta=\pm\frac{\sqrt{1-\cos 2\theta}}{\sqrt{1+\cos 2\theta}}\left(\frac{2\cos 2\theta+1}{2\cos 2\theta-1}\right)~~~~~(B)\]

By (A) and (B),

\[\tan^{2}\theta\tan^{2}3\theta=\left(\frac{1-\cos 2\theta}{1+\cos 2\theta}\right)^2\left(\frac{2\cos 2\theta+1}{2\cos 2\theta-1}\right)^2\]

Let \(\theta=18^{0}\),

\[\tan^{2}(18^{0})\tan^{2}(54^{0})=\left(\frac{1-\cos (36^{0})}{1+\cos (36^{0})}\right)^2\left(\frac{2\cos (36^{0})+1}{2\cos (36^{0})-1}\right)^2\]

Since \(\cos (36^{0})=\frac{1}{4}(1+\sqrt{5})\),

\[\tan^{2}(18^{0})\tan^{2}(54^{0})=\left(\frac{3-\sqrt{5}}{5+\sqrt{5}}\right)^{2}\left(\frac{3+ \sqrt{5}}{\sqrt{5}-1}\right)^{2}\]

\[\Rightarrow \tan^{2}(18^{0})\tan^{2}(54^{0})=\frac{1}{5}\left(\frac{9-5}{5-1}\right)^2\]

\[\therefore \tan^{2}(18^{0})\tan^{2}(54^{0})=0.2\]
 
This problem I think is a bit tedious and can be hard work. It comes from the Purdue Maths Dept PoW, only slightly modified.Given that \(\cos(36^\circ)=\frac{1}{4}(1+\sqrt{5}) \) find \( \tan^2(18^\circ)\, \tan^2(54^\circ) \)=============================================================Solution 1 (this is mine and I must admit I used Maxima to handle the algebra):First observe that from the quadrant corresponding to te angles here:\[\tan(A/2)=\sqrt{\frac{1-\cos(A)}{1+\cos(A)}}\]and:\[ \tan(3A/2)=\frac{3\tan(A/2)-\tan^3(A/2)}{1-3\tan^2(A/2)} \]So if we put \( A=36^\circ \) and allowing Maxima to do the algebra we get:\[ \tan^2(18^\circ)\, \tan^2(54^\circ)=\frac{1}{5} \]--------------------------------------------------------------------Solution 2 (this is the solution give on the originating site):\[ \cos(72^\circ)=2\cos^2(36^\circ)-1=\frac{1}{4}(\sqrt{5}-1) \]and:\(\displaystyle \phantom{xxxx} \tan^2(18^\circ)\, \tan^2(54^\circ) =\frac{\sin^2(54^\circ)\sin^2(18^\circ)}{\cos^2(54^\circ)\cos^2(18^\circ)} =\left[ \frac{(1/2)(\cos(36^\circ)-\cos(72^\circ))}{(1/2)(\cos(36^\circ)+\cos(72^\circ))} \right]^2\)\(\displaystyle \phantom{xxxx} \phantom{\tan^2(18^\circ)\, \tan^2(54^\circ)}=\left[ \frac{\frac{\sqrt{5}+1}{4} -\frac{\sqrt{5}-1}{4}}{\frac{\sqrt{5}+1}{4}+\frac{\sqrt{5}-1}{4}} \right] =\frac{1}{5}\)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
7K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
9
Views
2K