MHB CaptainBlacks Problem of the Week #2

  • Thread starter Thread starter CaptainBlack
  • Start date Start date
Click For Summary
The discussion focuses on finding the exact value of \(\tan^2(18^\circ) \tan^2(54^\circ)\) using the known value of \(\cos(36^\circ) = \frac{1}{4}(1+\sqrt{5})\). Participants present various methods, including using trigonometric identities and algebraic manipulation, to arrive at the solution. Both solutions provided confirm that \(\tan^2(18^\circ) \tan^2(54^\circ) = \frac{1}{5}\). The problem is noted to be tedious and complex, requiring careful algebraic handling. Ultimately, the exact value is established as 0.2.
CaptainBlack
Messages
801
Reaction score
0
I think this is a bit tedious and can be hard labour, but:

Given that \(\cos(36^\circ )=\frac{1}{4}(1+\sqrt{5})\) find the exact value of \(\tan^2(18^\circ) \tan^2(54^\circ)\).

CB
 
Last edited:
Mathematics news on Phys.org
CaptainBlack said:
I think this is a bit tedious and can be hard labour, but:

Given that \(\cos(36^\circ )=\frac{1}{4}(1+\sqrt{5})\) find the exact value of \(\tan^2(18^\circ) \tan^2(54^\circ)\).

CB

\[\cos 2\theta=2\cos^{2}\theta-1\Rightarrow\cos^{2}\theta=\frac{1+\cos 2\theta}{2}~~~~~(1)\]

\[\cos 2\theta=2\cos^{2}\theta-1\Rightarrow\cos^{2}\theta=\frac{1+\cos 2\theta}{2}~~~~~(2)\]

By (1) and (2),

\[\tan\theta=\pm\sqrt{\frac{1-\cos 2\theta}{1+\cos 2\theta}}~~~~~(A)\]

Also by the Triple angle formula for tangents,

\[\tan 3\theta = \frac{3 \tan\theta - \tan^3\theta}{1 - 3 \tan^2\theta}\]

Substituting \(\tan\theta=\sqrt{\frac{1-\cos 2\theta}{1+\cos 2\theta}}\) and simplifying yields,

\[\tan 3\theta=\pm\frac{\sqrt{1-\cos 2\theta}}{\sqrt{1+\cos 2\theta}}\left(\frac{2\cos 2\theta+1}{2\cos 2\theta-1}\right)~~~~~(B)\]

By (A) and (B),

\[\tan^{2}\theta\tan^{2}3\theta=\left(\frac{1-\cos 2\theta}{1+\cos 2\theta}\right)^2\left(\frac{2\cos 2\theta+1}{2\cos 2\theta-1}\right)^2\]

Let \(\theta=18^{0}\),

\[\tan^{2}(18^{0})\tan^{2}(54^{0})=\left(\frac{1-\cos (36^{0})}{1+\cos (36^{0})}\right)^2\left(\frac{2\cos (36^{0})+1}{2\cos (36^{0})-1}\right)^2\]

Since \(\cos (36^{0})=\frac{1}{4}(1+\sqrt{5})\),

\[\tan^{2}(18^{0})\tan^{2}(54^{0})=\left(\frac{3-\sqrt{5}}{5+\sqrt{5}}\right)^{2}\left(\frac{3+ \sqrt{5}}{\sqrt{5}-1}\right)^{2}\]

\[\Rightarrow \tan^{2}(18^{0})\tan^{2}(54^{0})=\frac{1}{5}\left(\frac{9-5}{5-1}\right)^2\]

\[\therefore \tan^{2}(18^{0})\tan^{2}(54^{0})=0.2\]
 
This problem I think is a bit tedious and can be hard work. It comes from the Purdue Maths Dept PoW, only slightly modified.Given that \(\cos(36^\circ)=\frac{1}{4}(1+\sqrt{5}) \) find \( \tan^2(18^\circ)\, \tan^2(54^\circ) \)=============================================================Solution 1 (this is mine and I must admit I used Maxima to handle the algebra):First observe that from the quadrant corresponding to te angles here:\[\tan(A/2)=\sqrt{\frac{1-\cos(A)}{1+\cos(A)}}\]and:\[ \tan(3A/2)=\frac{3\tan(A/2)-\tan^3(A/2)}{1-3\tan^2(A/2)} \]So if we put \( A=36^\circ \) and allowing Maxima to do the algebra we get:\[ \tan^2(18^\circ)\, \tan^2(54^\circ)=\frac{1}{5} \]--------------------------------------------------------------------Solution 2 (this is the solution give on the originating site):\[ \cos(72^\circ)=2\cos^2(36^\circ)-1=\frac{1}{4}(\sqrt{5}-1) \]and:\(\displaystyle \phantom{xxxx} \tan^2(18^\circ)\, \tan^2(54^\circ) =\frac{\sin^2(54^\circ)\sin^2(18^\circ)}{\cos^2(54^\circ)\cos^2(18^\circ)} =\left[ \frac{(1/2)(\cos(36^\circ)-\cos(72^\circ))}{(1/2)(\cos(36^\circ)+\cos(72^\circ))} \right]^2\)\(\displaystyle \phantom{xxxx} \phantom{\tan^2(18^\circ)\, \tan^2(54^\circ)}=\left[ \frac{\frac{\sqrt{5}+1}{4} -\frac{\sqrt{5}-1}{4}}{\frac{\sqrt{5}+1}{4}+\frac{\sqrt{5}-1}{4}} \right] =\frac{1}{5}\)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
7K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
1K