MHB Cartesian product and symmetric difference

AI Thread Summary
The discussion focuses on proving the equality Ax(BΔC) = (AxB) Δ (AxC) for three sets A, B, and C. Participants start by defining an arbitrary element p in Ax(BΔC) and explore its components, leading to the conclusion that p belongs to either Ax(B\C) or Ax(C\B). They confirm that this implies p is in (AxB) Δ (AxC), establishing one direction of the proof. The conversation also emphasizes the importance of demonstrating the reverse inclusion by selecting an element from (AxB) Δ (AxC) and showing it belongs to Ax(BΔC). Overall, the discussion successfully navigates the proof of the set equality.
fatineouahbi
Messages
10
Reaction score
0
Let A,B,C be three sets . Prove Ax(BΔC)= (AxB) Δ (AxC)

I tried to start with this :

Let p be an arbitrary element of Ax(BΔC)
then p=(x,y) such that x ∈ A and y ∈ (BΔC)
x ∈ A and (y∈ B\C or y∈ C\B)
(x ∈ A and y ∈ B\C) or (x ∈ A and y ∈ C\B)

But I don't know how to continue or if I should even start with this .
 
Mathematics news on Phys.org
fatineouahbi said:
Let A,B,C be three sets . Prove Ax(BΔC)= (AxB) Δ (AxC)

I tried to start with this :

Let p be an arbitrary element of Ax(BΔC)
then p=(x,y) such that x ∈ A and y ∈ (BΔC)
x ∈ A and (y∈ B\C or y∈ C\B)
(x ∈ A and y ∈ B\C) or (x ∈ A and y ∈ C\B)

But I don't know how to continue or if I should even start with this .

It is right so far.When does it hold that $p \in (A \times B) \triangle (A \times C)$ ?
 
evinda said:
It is right so far.When does it hold that $p \in (A \times B) \triangle (A \times C)$ ?

Hello :) Thank you , I think I may get it now ?

(x ∈ A and y ∈ B\C) or (x ∈ A and y ∈ C\B)
then p ∈ Ax(B\C) or p ∈ Ax(C\B)
then p ∈ (AxB) \ (AxC) or p ∈ (AxC) \ (AxB)
thus p ∈ (AxB) △ (AxC)
then Ax(BΔC) ‎⊂ (AxB) Δ (AxC)

Then I'll just try to go backwards maybe ?
 
fatineouahbi said:
Hello :) Thank you , I think I may get it now ?

(x ∈ A and y ∈ B\C) or (x ∈ A and y ∈ C\B)
then p ∈ Ax(B\C) or p ∈ Ax(C\B)
then p ∈ (AxB) \ (AxC) or p ∈ (AxC) \ (AxB)
thus p ∈ (AxB) △ (AxC)
then Ax(BΔC) ‎⊂ (AxB) Δ (AxC)
Well done, you are right :)

fatineouahbi said:
Then I'll just try to go backwards maybe ?
Yes, you pick an element in $(A \times B)\triangle (A \times C)$ and you need to show that it is also in $A \times (B \triangle C)$.
 
evinda said:
Well done, you are right :)

Yes, you pick an element in $(A \times B)\triangle (A \times C)$ and you need to show that it is also in $A \times (B \triangle C)$.

Thank you so much !
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top