A Cat state acting on given Hamiltonian

deepalakshmi
Messages
95
Reaction score
6
TL;DR Summary
Can a Hamiltonian which contain superposition of (a^†)b act on even coherent state
For example if I consider H = (a^†)b+a(b^†), how will it act on even coherent state i.e. |α⟩+|-α⟩?. I know that |α⟩ don't act on (a^†) because |α⟩ is a eigenstate of lowering operator.
 
Physics news on Phys.org
deepalakshmi said:
I know that |α⟩ don't act on (a^†) because |α⟩ is a eigenstate of lowering operator.
First, you are saying this backwards: operators act on states, not states on operators.

Second, the fact that a state is an eigenstate of one operator certainly does not mean that no other operators can act on it. All it means is that other operators will change the state.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top