Category Theory .... Groups and Isomorphisms .... Awodey, Section 1.5 .... ....

Click For Summary

Discussion Overview

The discussion revolves around the concept of isomorphisms in the context of category theory, specifically as presented in Steve Awodey's book, focusing on Section 1.5 and Definition 1.4. Participants explore how groups can be viewed as categories and the implications of this perspective on the nature of arrows within those categories.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Peter seeks clarification on proving that every arrow in the category $$G$$ is an isomorphism, as stated in Definition 1.4.
  • Some participants reference the definition of a group and the role of inverses in establishing the isomorphic nature of arrows in the category representation of groups.
  • There is a discussion on how groups can be viewed as categories, drawing parallels with monoids and emphasizing the additional requirement for inverses in groups.
  • Peter asserts that the existence of inverses for each arrow in the group $$G$$ leads to the conclusion that every arrow is an isomorphism, questioning if this reasoning is correct.
  • A later reply confirms Peter's reasoning, indicating agreement on the interpretation of groups as categories.

Areas of Agreement / Disagreement

While there is agreement on the interpretation of groups as categories and the implications for isomorphisms, the initial proof request remains open, and the discussion reflects varying levels of understanding and exploration of the concepts involved.

Contextual Notes

The discussion does not resolve the proof request for demonstrating that every arrow is an isomorphism, and there may be assumptions regarding the definitions of groups and categories that are not fully articulated.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Steve Awodey's book: Category Theory (Second Edition) and am focused on Section 1.5 Isomorphisms ...

I need some further help in order to fully understand some aspects of Definition 1.4, Page 12 ... ...

The start of Section 1.5, including Definition 1.4 ... reads as follows:https://www.physicsforums.com/attachments/8355In the above text from Awodey, in Definition 1.4, we read the following:

" ... ... Thus $$G$$ is a category with one object, in which every arrow is an isomorphism. ... ... "Can someone please demonstrate a proof that in the category $$G$$ every arrow is an isomorphism ... ?Hope someone can help ...

Peter
 
Physics news on Phys.org
Recall the definition of a group.
In a group $G$, what is the definition of the inverse $g^{-1}$ of an element $g \in G$ ?

Just like we viewed monoids as categories. we now can view the group $G$ as a category. Can you describe how? You can follow the definition of monoids viewed as categories in section 1.5.1 of Simmons.

But you have to make an additional rule for the inverse $g^{-1}$ of an element $g \in G$

If you have correctly defined inverses in a group viewed as a category, you can compare this definition with the definition of an isomorphism in a general category $C$. What do you observe ?
 
steenis said:
Recall the definition of a group.
In a group $G$, what is the definition of the inverse $g^{-1}$ of an element $g \in G$ ?

Just like we viewed monoids as categories. we now can view the group $G$ as a category. Can you describe how? You can follow the definition of monoids viewed as categories in section 1.5.1 of Simmons.

But you have to make an additional rule for the inverse $g^{-1}$ of an element $g \in G$

If you have correctly defined inverses in a group viewed as a category, you can compare this definition with the definition of an isomorphism in a general category $C$. What do you observe ?
Hi Steenis ... thanks for the help ...

Well ...

... a group $$G$$ is a monoid in which every element $$x \in G$$ has an inverse: that is, for each $$x \in G$$ there exists an element $$x^{-1}$$, called the inverse of $$x$$ which is such that $$x \bullet x^{-1} = x^{-1} \bullet x = 1_G$$ ... ...

Now ... a group $$G$$ viewed as a category is a monoid: that is a category with one element $$\star$$ ... but as a group viewed as a category we have the extra condition that there exist inverses for every element (arrow).

So ... with a group $$G$$ as with a monoid, the elements are arrows ... but the existence of inverses in the case of a group means that for each arrow $$x \in G$$ there exists an arrow $$x^{-1}$$ such that $$x \circ x^{-1} = x^{-1} \circ x = 1_G$$ where $$\circ$$ is the composition of arrows ... BUT ... this is the condition for the arrow $$x : \star \to \star$$ to be an isomorphism ... ... so then because this is true for every arrow in $$G$$, we have that every arrow is an isomorphism ...Is the above correct?

Peter
 
Ok, Peter, correct
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K