Challanging Problem It is nessecary to solve quicly

  • Thread starter Thread starter vip89
  • Start date Start date
Click For Summary

Homework Help Overview

The discussion revolves around a problem involving the motion of a car along a real line, specifically analyzing its position and velocity functions over a defined time interval. The car starts and ends its journey at rest, and participants are tasked with proving a condition related to the maximum velocity attained during the trip.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • Participants discuss the implications of the average velocity being 1 and question whether the maximum velocity L must be greater than 1. Some explore the relationship between average velocity and instantaneous velocity, while others consider the implications of differentiability on the position and velocity functions.

Discussion Status

There is an active exploration of different interpretations regarding the relationship between average velocity and maximum velocity. Some participants suggest that L must be greater than 1 based on the conditions given, while others challenge this assumption, proposing that L could equal 1 under certain conditions. Guidance has been offered regarding the need to consider both acceleration and deceleration in the context of the problem.

Contextual Notes

Participants note that the problem requires careful consideration of the definitions and properties of velocity and acceleration, as well as the implications of the car's motion being differentiable. There is also mention of a potential deadline for the problem, indicating a time constraint on the discussion.

vip89
Messages
32
Reaction score
0
Challanging Problem " It is nessecary to solve quicly"

I have a problem :
A car moves along the real line from x = 0 at t = 0 to x = 1 at t = 1, with
differentiable position function x(t) and differentiable velocity function v(t) = x0(t).
The car
begins and ends the trip at a standstill; that is v = 0 at both the beginning and the end of
the trip. Let L be the maximum velocity attained during the trip. Prove that at some time
between the beginning and end of the trip, l v’ l > L^2/(L-1).

Can you verify that L > 1 ?

Thankx
 
Physics news on Phys.org
The average velocity is 1 and since the position function is continuous (since its differentiable) and v(0) = 0 = v(1), there must be some time at which the velocity is greater than 1 (for otherwise the average would be less than 1). Therefore L > 1.

I take it that v' is the derivative of the velocity function, i.e. the acceleration?
 
eok20 said:
The average velocity is 1 and since the position function is continuous (since its differentiable) and v(0) = 0 = v(1), there must be some time at which the velocity is greater than 1 (for otherwise the average would be less than 1). Therefore L > 1.

I take it that v' is the derivative of the velocity function, i.e. the acceleration?

Thnkx very much, but how do u know that The average velocity is 1??
 
L=1 simply by taking the slope of a straight line that connects the 2 endpoints.
 
The car went distance 1 in time 1: 1/1= average speed!
 
eok20 said:
The average velocity is 1 and since the position function is continuous (since its differentiable) and v(0) = 0 = v(1), there must be some time at which the velocity is greater than 1 (for otherwise the average would be less than 1). Therefore L > 1.

I take it that v' is the derivative of the velocity function, i.e. the acceleration?

How u jumped from "The average velocity is 1 and since the position function is continuous (since its differentiable) and v(0) = 0 = v(1)" To "L > 1."

Is it a rule ?Give me the sorce u got that from
If not ,how u profed it??
 
tHESE R my trials
pls tell me wt I must do??
 

Attachments

  • pass8.JPG
    pass8.JPG
    36.9 KB · Views: 501
  • pass9.JPG
    pass9.JPG
    36.1 KB · Views: 483
  • pass7.JPG
    pass7.JPG
    45.9 KB · Views: 477
Actually, it is NOT true that L> 1. If the car moved with constant velocity, then L would be 1. The average speed is 1. If that speed is not constant, then there must be sometime when the velocity was less than 1, some time when the velocity was greater than 1. What is true is that ]L\ge 1.
 
The velocity is zero at the beginning and end of the trip, which is less than the average. So it must be greater than the average for some portion of the trip.
 
  • #10
How I can complete the question??
I know that L>1
I think I must verify that the opposite of l v’ l > L^2/(L-1) is wrong
pls help me today?
 
  • #11
Redbelly98 said:
The velocity is zero at the beginning and end of the trip, which is less than the average. So it must be greater than the average for some portion of the trip.
Thanks. I didn't even think of that!
 
  • #12
vip89 said:
How I can complete the question??
I know that L>1
I think I must verify that the opposite of l v’ l > L^2/(L-1) is wrong
pls help me today?

Yes, that's a good idea! Notice that | |. You must take both acceleration and deceleration into account. Suppose the acceleration were never greater than L^2/(L-1). In fact, in order to make it simpler, suppose the acceleration were always equal to L^2/(L-1). How long would it take the car to reach speed L? If that is larger than 1/2, the car has less than 1/2 second left to go from L to 0. Assuming the deceleration is never less than -L^2/(L-1), how long will it take the car to go from speed L to 0?
 
  • #13
I tried (and failed) in an attempt to contradict the statement we're supposed to prove. Choosing a constant acceleration for 0<t<0.5, and the negative of that acceleration for 1/2<t<1, I got the following.

In order to have x=1 at t=1:

a = 4, t<0<1/2
a = -4, 1/2<0<1

v = 4t for t<0<1/2
v = 4(1-t) for 1/2<t<1

So L = 2 (maximum of v, occurs at t=1/2)

And |v'| = |a| is equal to L^2/(L-1) = 4, never greater than it.

But ... in this example v is not differentiable at t=1/2, so this doesn't disprove the statement after all.

p.s on a side note, I notice that it was "necessary to solve quickly" this problem more than 1 week ago. When is/was the actual deadline for this?

I prefer it when thread titles are actually descriptive of the question being asked. Too many threads titled "URGENT" or "solve quickly" or "very very important" can be trying on peoples' goodwill and patience.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
11
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
4K