A multiple zeta value is defined as(adsbygoogle = window.adsbygoogle || []).push({});

[tex] \zeta(s_1,...,s_k) = \sum_{n_1 > n_2 ... > n_k > 0} \frac{1}{n_1^{s_1} n_2^{s_2}...n_k^{s_k}} [/tex].

For example,

[tex] \zeta(4) = \sum_{n = 1}^{\infty} \frac{1}{n^4} [/tex]

and

[tex] \zeta(2,2) = \sum_{m =1}^{\infty} \sum_{n = 1}^{m-1} \frac{1}{ m^2 n^2} [/tex].

Prove the following relationship:

[tex] \zeta(2)^2 = 4 \zeta(3,1) + 2 \zeta(2,2) [/tex]

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Challenge 1: Multiple Zeta Values

Loading...

Similar Threads - Challenge Multiple Zeta | Date |
---|---|

B Complex products: perpendicular vectors and rotation effects | Dec 17, 2017 |

I Partial Fraction Challenge | Feb 17, 2017 |

B Micromass challenge stuff | Nov 11, 2016 |

I Micromass' big October challenge! | Oct 1, 2016 |

A Challenge: splitting an angle into three equal parts | Jul 4, 2016 |

**Physics Forums - The Fusion of Science and Community**