MHB Challenge of Square Root Problem

Click For Summary
The discussion focuses on proving that the expression $\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1}$ is greater than 5. The proof begins by establishing that $\sqrt{2n+1} - \sqrt{2n}$ is greater than a specific fraction, leading to an inequality involving the sum of reciprocals of square roots. By analyzing these terms, the discussion shows that the total exceeds 8, which contributes to the overall inequality. Ultimately, it concludes that the original expression is indeed greater than 5, confirming the initial claim. The mathematical reasoning is thorough and well-supported throughout the discussion.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that $\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1}> 5$.
 
Mathematics news on Phys.org
anemone said:
Show that $\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1}> 5$.
[sp]
First, $\sqrt{2n+1} - \sqrt{2n} = \dfrac1{\sqrt{2n+1} + \sqrt{2n}} > \dfrac1{2\sqrt{2n+1}}.$ Therefore $$\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\ldots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1} > \frac12\left(\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3}\right) + 1.$$ Next, $$\frac1{\sqrt3} >\frac1{\sqrt4} = \frac12,$$ $$\frac1{\sqrt5} + \frac1{\sqrt7} + \frac1{\sqrt9} > \frac3{\sqrt9} = \frac33,$$ $$\frac1{\sqrt{11}} + \frac1{\sqrt{13}} + \frac1{\sqrt{15}} > \frac3{\sqrt16} = \frac34,$$ and so on, up to $$\frac1{\sqrt{83}} + \frac1{\sqrt{85}} +\frac1{\sqrt{87}} +\ldots + \frac1{\sqrt{99}} > \frac9{\sqrt{100}} = \frac9{10}.$$ Putting those all together, we get $$\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3} > \frac9{10} + \frac99 + \frac78 + \frac77 + \frac56 + \frac55 + \frac34 + \frac33 + \frac12 = 8\tfrac{103}{120} > 8.$$ Finally, $$\begin{aligned}\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\ldots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1} &> \frac12\left(\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3}\right) + 1 \\ &> \frac82 + 1 = 5.\end{aligned}$$
[/sp]
 
Opalg said:
[sp]
First, $\sqrt{2n+1} - \sqrt{2n} = \dfrac1{\sqrt{2n+1} + \sqrt{2n}} > \dfrac1{2\sqrt{2n+1}}.$ Therefore $$\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\ldots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1} > \frac12\left(\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3}\right) + 1.$$ Next, $$\frac1{\sqrt3} >\frac1{\sqrt4} = \frac12,$$ $$\frac1{\sqrt5} + \frac1{\sqrt7} + \frac1{\sqrt9} > \frac3{\sqrt9} = \frac33,$$ $$\frac1{\sqrt{11}} + \frac1{\sqrt{13}} + \frac1{\sqrt{15}} > \frac3{\sqrt16} = \frac34,$$ and so on, up to $$\frac1{\sqrt{83}} + \frac1{\sqrt{85}} +\frac1{\sqrt{87}} +\ldots + \frac1{\sqrt{99}} > \frac9{\sqrt{100}} = \frac9{10}.$$ Putting those all together, we get $$\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3} > \frac9{10} + \frac99 + \frac78 + \frac77 + \frac56 + \frac55 + \frac34 + \frac33 + \frac12 = 8\tfrac{103}{120} > 8.$$ Finally, $$\begin{aligned}\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\ldots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1} &> \frac12\left(\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3}\right) + 1 \\ &> \frac82 + 1 = 5.\end{aligned}$$
[/sp]

Very well done, Opalg! (Smile):cool:

Solution of other:

Let

$X=\sqrt{100}-\sqrt{99}+\sqrt{98}-\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}$, and

$Y+1=\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1}$.

Adding up the equations yields $X+Y=\sqrt{100}-\sqrt{2}$.

Note that from AM-GM inequality, we have the following inequalities that are true:

$100+98>2\sqrt{100}\sqrt{98}$

$4(99)>100+2\sqrt{100}\sqrt{98}+98$

$2\sqrt{99}>\sqrt{100}+\sqrt{98}$

$$\color{yellow}\bbox[5px,purple]{\sqrt{99}-\sqrt{98}>\sqrt{100}-\sqrt{99}}$$,

$$\color{yellow}\bbox[5px,green]{\sqrt{97}-\sqrt{96}>\sqrt{98}-\sqrt{97}}$$, and so on and so forth, we know $Y>X$ must hold.

Therefore, $2Y>X+Y=\sqrt{100}-\sqrt{2}$ (from $X+Y=\sqrt{100}-\sqrt{2}$), and so

$Y+1>\dfrac{\sqrt{100}-\sqrt{2}}{2}+1=5+\left(1-\dfrac{\sqrt{2}}{2}\right)>5$ and we're hence done.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
5K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 45 ·
2
Replies
45
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K