Challenge of Square Root Problem

Click For Summary
SUMMARY

The forum discussion centers on proving the inequality $\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1}> 5$. The proof utilizes the identity $\sqrt{2n+1} - \sqrt{2n} = \frac{1}{\sqrt{2n+1} + \sqrt{2n}}$ to establish a lower bound for the series. By summing the contributions from various terms, the conclusion is reached that the total exceeds 5, specifically showing that the series is greater than 8. The mathematical rigor is maintained throughout the proof, confirming the validity of the inequality.

PREREQUISITES
  • Understanding of square roots and their properties
  • Familiarity with inequalities and summation techniques
  • Knowledge of basic calculus concepts, particularly limits
  • Ability to manipulate algebraic expressions and inequalities
NEXT STEPS
  • Study the properties of square roots and their applications in inequalities
  • Learn about convergence and divergence of series in calculus
  • Explore advanced techniques in mathematical proofs, such as induction and contradiction
  • Investigate the applications of inequalities in real analysis and optimization problems
USEFUL FOR

Mathematicians, students studying calculus or real analysis, and anyone interested in advanced problem-solving techniques involving inequalities and series.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that $\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1}> 5$.
 
Mathematics news on Phys.org
anemone said:
Show that $\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1}> 5$.
[sp]
First, $\sqrt{2n+1} - \sqrt{2n} = \dfrac1{\sqrt{2n+1} + \sqrt{2n}} > \dfrac1{2\sqrt{2n+1}}.$ Therefore $$\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\ldots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1} > \frac12\left(\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3}\right) + 1.$$ Next, $$\frac1{\sqrt3} >\frac1{\sqrt4} = \frac12,$$ $$\frac1{\sqrt5} + \frac1{\sqrt7} + \frac1{\sqrt9} > \frac3{\sqrt9} = \frac33,$$ $$\frac1{\sqrt{11}} + \frac1{\sqrt{13}} + \frac1{\sqrt{15}} > \frac3{\sqrt16} = \frac34,$$ and so on, up to $$\frac1{\sqrt{83}} + \frac1{\sqrt{85}} +\frac1{\sqrt{87}} +\ldots + \frac1{\sqrt{99}} > \frac9{\sqrt{100}} = \frac9{10}.$$ Putting those all together, we get $$\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3} > \frac9{10} + \frac99 + \frac78 + \frac77 + \frac56 + \frac55 + \frac34 + \frac33 + \frac12 = 8\tfrac{103}{120} > 8.$$ Finally, $$\begin{aligned}\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\ldots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1} &> \frac12\left(\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3}\right) + 1 \\ &> \frac82 + 1 = 5.\end{aligned}$$
[/sp]
 
Opalg said:
[sp]
First, $\sqrt{2n+1} - \sqrt{2n} = \dfrac1{\sqrt{2n+1} + \sqrt{2n}} > \dfrac1{2\sqrt{2n+1}}.$ Therefore $$\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\ldots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1} > \frac12\left(\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3}\right) + 1.$$ Next, $$\frac1{\sqrt3} >\frac1{\sqrt4} = \frac12,$$ $$\frac1{\sqrt5} + \frac1{\sqrt7} + \frac1{\sqrt9} > \frac3{\sqrt9} = \frac33,$$ $$\frac1{\sqrt{11}} + \frac1{\sqrt{13}} + \frac1{\sqrt{15}} > \frac3{\sqrt16} = \frac34,$$ and so on, up to $$\frac1{\sqrt{83}} + \frac1{\sqrt{85}} +\frac1{\sqrt{87}} +\ldots + \frac1{\sqrt{99}} > \frac9{\sqrt{100}} = \frac9{10}.$$ Putting those all together, we get $$\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3} > \frac9{10} + \frac99 + \frac78 + \frac77 + \frac56 + \frac55 + \frac34 + \frac33 + \frac12 = 8\tfrac{103}{120} > 8.$$ Finally, $$\begin{aligned}\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\ldots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1} &> \frac12\left(\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3}\right) + 1 \\ &> \frac82 + 1 = 5.\end{aligned}$$
[/sp]

Very well done, Opalg! (Smile):cool:

Solution of other:

Let

$X=\sqrt{100}-\sqrt{99}+\sqrt{98}-\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}$, and

$Y+1=\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1}$.

Adding up the equations yields $X+Y=\sqrt{100}-\sqrt{2}$.

Note that from AM-GM inequality, we have the following inequalities that are true:

$100+98>2\sqrt{100}\sqrt{98}$

$4(99)>100+2\sqrt{100}\sqrt{98}+98$

$2\sqrt{99}>\sqrt{100}+\sqrt{98}$

$$\color{yellow}\bbox[5px,purple]{\sqrt{99}-\sqrt{98}>\sqrt{100}-\sqrt{99}}$$,

$$\color{yellow}\bbox[5px,green]{\sqrt{97}-\sqrt{96}>\sqrt{98}-\sqrt{97}}$$, and so on and so forth, we know $Y>X$ must hold.

Therefore, $2Y>X+Y=\sqrt{100}-\sqrt{2}$ (from $X+Y=\sqrt{100}-\sqrt{2}$), and so

$Y+1>\dfrac{\sqrt{100}-\sqrt{2}}{2}+1=5+\left(1-\dfrac{\sqrt{2}}{2}\right)>5$ and we're hence done.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 45 ·
2
Replies
45
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K