MHB Challenge of Square Root Problem

Click For Summary
The discussion focuses on proving that the expression $\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1}$ is greater than 5. The proof begins by establishing that $\sqrt{2n+1} - \sqrt{2n}$ is greater than a specific fraction, leading to an inequality involving the sum of reciprocals of square roots. By analyzing these terms, the discussion shows that the total exceeds 8, which contributes to the overall inequality. Ultimately, it concludes that the original expression is indeed greater than 5, confirming the initial claim. The mathematical reasoning is thorough and well-supported throughout the discussion.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that $\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1}> 5$.
 
Mathematics news on Phys.org
anemone said:
Show that $\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1}> 5$.
[sp]
First, $\sqrt{2n+1} - \sqrt{2n} = \dfrac1{\sqrt{2n+1} + \sqrt{2n}} > \dfrac1{2\sqrt{2n+1}}.$ Therefore $$\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\ldots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1} > \frac12\left(\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3}\right) + 1.$$ Next, $$\frac1{\sqrt3} >\frac1{\sqrt4} = \frac12,$$ $$\frac1{\sqrt5} + \frac1{\sqrt7} + \frac1{\sqrt9} > \frac3{\sqrt9} = \frac33,$$ $$\frac1{\sqrt{11}} + \frac1{\sqrt{13}} + \frac1{\sqrt{15}} > \frac3{\sqrt16} = \frac34,$$ and so on, up to $$\frac1{\sqrt{83}} + \frac1{\sqrt{85}} +\frac1{\sqrt{87}} +\ldots + \frac1{\sqrt{99}} > \frac9{\sqrt{100}} = \frac9{10}.$$ Putting those all together, we get $$\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3} > \frac9{10} + \frac99 + \frac78 + \frac77 + \frac56 + \frac55 + \frac34 + \frac33 + \frac12 = 8\tfrac{103}{120} > 8.$$ Finally, $$\begin{aligned}\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\ldots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1} &> \frac12\left(\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3}\right) + 1 \\ &> \frac82 + 1 = 5.\end{aligned}$$
[/sp]
 
Opalg said:
[sp]
First, $\sqrt{2n+1} - \sqrt{2n} = \dfrac1{\sqrt{2n+1} + \sqrt{2n}} > \dfrac1{2\sqrt{2n+1}}.$ Therefore $$\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\ldots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1} > \frac12\left(\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3}\right) + 1.$$ Next, $$\frac1{\sqrt3} >\frac1{\sqrt4} = \frac12,$$ $$\frac1{\sqrt5} + \frac1{\sqrt7} + \frac1{\sqrt9} > \frac3{\sqrt9} = \frac33,$$ $$\frac1{\sqrt{11}} + \frac1{\sqrt{13}} + \frac1{\sqrt{15}} > \frac3{\sqrt16} = \frac34,$$ and so on, up to $$\frac1{\sqrt{83}} + \frac1{\sqrt{85}} +\frac1{\sqrt{87}} +\ldots + \frac1{\sqrt{99}} > \frac9{\sqrt{100}} = \frac9{10}.$$ Putting those all together, we get $$\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3} > \frac9{10} + \frac99 + \frac78 + \frac77 + \frac56 + \frac55 + \frac34 + \frac33 + \frac12 = 8\tfrac{103}{120} > 8.$$ Finally, $$\begin{aligned}\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\ldots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1} &> \frac12\left(\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3}\right) + 1 \\ &> \frac82 + 1 = 5.\end{aligned}$$
[/sp]

Very well done, Opalg! (Smile):cool:

Solution of other:

Let

$X=\sqrt{100}-\sqrt{99}+\sqrt{98}-\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}$, and

$Y+1=\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1}$.

Adding up the equations yields $X+Y=\sqrt{100}-\sqrt{2}$.

Note that from AM-GM inequality, we have the following inequalities that are true:

$100+98>2\sqrt{100}\sqrt{98}$

$4(99)>100+2\sqrt{100}\sqrt{98}+98$

$2\sqrt{99}>\sqrt{100}+\sqrt{98}$

$$\color{yellow}\bbox[5px,purple]{\sqrt{99}-\sqrt{98}>\sqrt{100}-\sqrt{99}}$$,

$$\color{yellow}\bbox[5px,green]{\sqrt{97}-\sqrt{96}>\sqrt{98}-\sqrt{97}}$$, and so on and so forth, we know $Y>X$ must hold.

Therefore, $2Y>X+Y=\sqrt{100}-\sqrt{2}$ (from $X+Y=\sqrt{100}-\sqrt{2}$), and so

$Y+1>\dfrac{\sqrt{100}-\sqrt{2}}{2}+1=5+\left(1-\dfrac{\sqrt{2}}{2}\right)>5$ and we're hence done.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 45 ·
2
Replies
45
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K