Challenge question on equilateral triangle: Prove ∠DBA=42°

Click For Summary
SUMMARY

In the equilateral triangle ABC, with point D inside, the angles are defined as follows: ∠BAD = 54° and ∠BCD = 48°. The objective is to prove that ∠DBA = 42°. The solution can be efficiently derived using the sine and cosine theorems, avoiding unnecessary calculations. A proposed method involves extending line CD to point F and establishing a right triangle CFB, leading to the conclusion that angle BFC equals 42°.

PREREQUISITES
  • Understanding of basic triangle properties, specifically equilateral triangles.
  • Knowledge of the sine and cosine theorems.
  • Familiarity with angle relationships in triangles.
  • Ability to construct and analyze geometric diagrams.
NEXT STEPS
  • Study the sine and cosine theorems in detail.
  • Explore properties of equilateral triangles and their internal angles.
  • Learn about triangle similarity and its applications in geometric proofs.
  • Practice constructing geometric diagrams to visualize angle relationships.
USEFUL FOR

Mathematicians, geometry students, and educators looking to enhance their understanding of triangle properties and proofs involving angles.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In an equilateral triangle $ABC$, let $D$ be a point inside the triangle such that $\angle BAD=54^\circ$ and $\angle BCD=48^\circ$. Prove that $\angle DBA=42^\circ$.
 
Mathematics news on Phys.org
I managed to get the answer using some complicated calculation – but given that the solution is a nice-looking answer, it’s likely much of the complicated calculation is unnecessary. I’m sure there is a less complicated solution than mine. (Wondering)

Since the problem involves only angles, the actual size of the equilateral triangle is immaterial; for convenience, let us take it to have side length $2$.

Let A, B, C, D have co-ordinates $(0,0)$, $(2,0)$, $(1,\sqrt3)$, $(a,b)$ respectively. Then we immediately have
$$b\ =\ a\tan54^\circ.$$
Let M be the midpoint of AB and N be the foot of the perpendicular from D to CM. Then we have $|\mathrm{DN}|=1-a$, $|\mathrm{CN}|=\sqrt3-b$, and $\angle\mathrm{DCN}=\angle\mathrm{DCB}-\angle\mathrm{NCB}=18^\circ$ and so
$$\tan18^\circ\ =\ \frac{1-a}{\sqrt3-b}\ =\ \frac{1-a}{\sqrt3-a\tan54^\circ}$$
$\displaystyle\implies\ a\ =\ \frac{1-\sqrt3\tan18^\circ}{1-\tan18^\circ\tan54^\circ}.$

Finally, the positive value of the slope of the line segment DB, which is $\tan\angle\mathrm{DBA}$, is
$$\frac b{2-a}\ =\ \frac{a\tan54^\circ}{2-a}$$
and substituting for $a$ should give this value as the tangent of 42° (calculator possibly needed). (Thinking)
 
Last edited:
I think I’ve got it!

I showed that in my post above that
$$a\ =\ \frac{1-\sqrt3\tan18^\circ}{1-\tan18^\circ\tan54^\circ}.$$
But
$$\tan54^\circ\ =\ \frac1{\tan36^\circ}\ =\ \frac{1-\tan^218^\circ}{2\tan18^\circ}$$
$\implies\ \tan18^\circ\tan54^\circ\ =\ \dfrac{1-\tan^218^\circ}2$

$\implies\ 1-\tan18^\circ\tan54^\circ\ =\ \dfrac{1+\tan^218^\circ}2$

$\implies\ a\ =\ \dfrac{2(1-\sqrt3\tan18^\circ)}{1+\tan^218^\circ}$

$\implies\ 2-a\ =\ 2-\dfrac{2(1-\sqrt3\tan18^\circ)}{1+\tan^218^\circ}\ =\ \dfrac{2\tan18^\circ(\sqrt3+\tan18^\circ)}{1+\tan^218^\circ}.$

$\implies\ \dfrac a{2-a}\ =\ \dfrac{(1-\sqrt3\tan18^\circ)}{\sqrt3+\tan18^\circ}\cdot\dfrac1{\tan18^\circ}$.

Also
$$\tan{78^\circ}\ =\ \tan(60+18)^\circ\ =\ \frac{\sqrt3+\tan18^\circ}{1-\sqrt3\tan18^\circ}$$
and the quantity $\dfrac b{2-a}$ in my post above is supposed to be $\tan42^\circ$. So my entire solution reduces to proving the following:
$$\boxed{\tan42^\circ\ =\ \frac{\tan54^\circ}{\tan78^\circ\cdot\tan18^\circ}}.$$

It’s quite simple, really: just show that
$$\tan x^\circ\tan(60+x)^\circ\tan(60-x)^\circ\ =\ \tan(3x)^\circ.$$
Proof:
$$\begin{array}{rcl}\tan x^\circ\tan(60+x)^\circ\tan(60-x)^\circ &=& \tan x^\circ\cdot\dfrac{\sqrt3+\tan x^\circ}{1-\sqrt3\tan x^\circ}\cdot\dfrac{\sqrt3-\tan x^\circ}{1+\sqrt3\tan x^\circ} \\\\ {} &=& \dfrac{3\tan x^\circ-\tan^3x^\circ}{1-3\tan^2x^\circ} \\\\ {} &=& \tan(3x)^\circ.\end{array}$$
Now put $x=12$:
$$\tan12^\circ\tan72^\circ\tan48^\circ\ =\ \tan36^\circ.$$
Now use the fact that $\tan(90-\theta)^\circ=\dfrac1{\tan\theta^\circ}$:
$$\frac1{\tan78^\circ\tan18^\circ\tan42^\circ} =\ \frac1{\tan54^\circ}$$
$\implies\ \tan42^\circ\ =\ \dfrac{\tan54^\circ}{\tan78^\circ\cdot\tan18^\circ}$

– QED! (Clapping)
 
Olinguito said:
I think I’ve got it!

I showed that in my post above that
$$a\ =\ \frac{1-\sqrt3\tan18^\circ}{1-\tan18^\circ\tan54^\circ}.$$
But
$$\tan54^\circ\ =\ \frac1{\tan36^\circ}\ =\ \frac{1-\tan^218^\circ}{2\tan18^\circ}$$
$\implies\ \tan18^\circ\tan54^\circ\ =\ \dfrac{1-\tan^218^\circ}2$

$\implies\ 1-\tan18^\circ\tan54^\circ\ =\ \dfrac{1+\tan^218^\circ}2$

$\implies\ a\ =\ \dfrac{2(1-\sqrt3\tan18^\circ)}{1+\tan^218^\circ}$

$\implies\ 2-a\ =\ 2-\dfrac{2(1-\sqrt3\tan18^\circ)}{1+\tan^218^\circ}\ =\ \dfrac{2\tan18^\circ(\sqrt3+\tan18^\circ)}{1+\tan^218^\circ}.$

$\implies\ \dfrac a{2-a}\ =\ \dfrac{(1-\sqrt3\tan18^\circ)}{\sqrt3+\tan18^\circ}\cdot\dfrac1{\tan18^\circ}$.

Also
$$\tan{78^\circ}\ =\ \tan(60+18)^\circ\ =\ \frac{\sqrt3+\tan18^\circ}{1-\sqrt3\tan18^\circ}$$
and the quantity $\dfrac b{2-a}$ in my post above is supposed to be $\tan42^\circ$. So my entire solution reduces to proving the following:
$$\boxed{\tan42^\circ\ =\ \frac{\tan54^\circ}{\tan78^\circ\cdot\tan18^\circ}}.$$

It’s quite simple, really: just show that
$$\tan x^\circ\tan(60+x)^\circ\tan(60-x)^\circ\ =\ \tan(3x)^\circ.$$
Proof:
$$\begin{array}{rcl}\tan x^\circ\tan(60+x)^\circ\tan(60-x)^\circ &=& \tan x^\circ\cdot\dfrac{\sqrt3+\tan x^\circ}{1-\sqrt3\tan x^\circ}\cdot\dfrac{\sqrt3-\tan x^\circ}{1+\sqrt3\tan x^\circ} \\\\ {} &=& \dfrac{3\tan x^\circ-\tan^3x^\circ}{1-3\tan^2x^\circ} \\\\ {} &=& \tan(3x)^\circ.\end{array}$$
Now put $x=12$:
$$\tan12^\circ\tan72^\circ\tan48^\circ\ =\ \tan36^\circ.$$
Now use the fact that $\tan(90-\theta)^\circ=\dfrac1{\tan\theta^\circ}$:
$$\frac1{\tan78^\circ\tan18^\circ\tan42^\circ} =\ \frac1{\tan54^\circ}$$
$\implies\ \tan42^\circ\ =\ \dfrac{\tan54^\circ}{\tan78^\circ\cdot\tan18^\circ}$

– QED! (Clapping)


Hello,

It can be proved using sine and cosine theorem in a very short period of time and without unnecessary work.
 
Last edited:
Dhamnekar Winod said:
Hello,

It can be proved using sine and cosine theorem in a very short period of time and without unnecessary work.

Hi Dhamnekar Winod, can you enlighten us with your quick and neat solution?(Wondering)
 
I've been trying this with NO trigonometry.
Code:
                       F             A

               E

           
          D     C                 B
CD is extended to F (E is on AB) creating right triangle CFB.
Since angleBCF=48, then angleBFC=42.

I then extended BD to G (not shown in my poor diagram!),
such that angleGAB = 90.

Now if it could be shown that triangleABG is similar to triangleCFB,
then angleABD = 42.

But can't wrap this up...any ideas you guys?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K