Challenge question on equilateral triangle: Prove ∠DBA=42°

Click For Summary

Discussion Overview

The discussion revolves around a geometric problem involving an equilateral triangle $ABC$ and a point $D$ inside the triangle. Participants are tasked with proving that $\angle DBA=42^\circ$ given specific angle measures. The scope includes mathematical reasoning and exploration of various proof techniques.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant states the problem and the angles given: $\angle BAD=54^\circ$ and $\angle BCD=48^\circ$.
  • Another participant mentions having found a solution through complicated calculations but suggests there may be a simpler method.
  • Multiple participants express confidence in finding a solution using the sine and cosine theorems, indicating a belief in a more straightforward approach.
  • One participant describes an approach without trigonometry, involving extending lines and considering triangle similarity, but expresses difficulty in concluding the proof.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best method to prove the angle. There are competing views on the use of trigonometric versus non-trigonometric approaches, and the discussion remains unresolved regarding the most efficient proof.

Contextual Notes

Some participants reference specific geometric theorems and relationships, but the discussion lacks clarity on certain assumptions and the completeness of the proposed methods. The dependency on the definitions of angles and triangle properties is implied but not explicitly stated.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In an equilateral triangle $ABC$, let $D$ be a point inside the triangle such that $\angle BAD=54^\circ$ and $\angle BCD=48^\circ$. Prove that $\angle DBA=42^\circ$.
 
Mathematics news on Phys.org
I managed to get the answer using some complicated calculation – but given that the solution is a nice-looking answer, it’s likely much of the complicated calculation is unnecessary. I’m sure there is a less complicated solution than mine. (Wondering)

Since the problem involves only angles, the actual size of the equilateral triangle is immaterial; for convenience, let us take it to have side length $2$.

Let A, B, C, D have co-ordinates $(0,0)$, $(2,0)$, $(1,\sqrt3)$, $(a,b)$ respectively. Then we immediately have
$$b\ =\ a\tan54^\circ.$$
Let M be the midpoint of AB and N be the foot of the perpendicular from D to CM. Then we have $|\mathrm{DN}|=1-a$, $|\mathrm{CN}|=\sqrt3-b$, and $\angle\mathrm{DCN}=\angle\mathrm{DCB}-\angle\mathrm{NCB}=18^\circ$ and so
$$\tan18^\circ\ =\ \frac{1-a}{\sqrt3-b}\ =\ \frac{1-a}{\sqrt3-a\tan54^\circ}$$
$\displaystyle\implies\ a\ =\ \frac{1-\sqrt3\tan18^\circ}{1-\tan18^\circ\tan54^\circ}.$

Finally, the positive value of the slope of the line segment DB, which is $\tan\angle\mathrm{DBA}$, is
$$\frac b{2-a}\ =\ \frac{a\tan54^\circ}{2-a}$$
and substituting for $a$ should give this value as the tangent of 42° (calculator possibly needed). (Thinking)
 
Last edited:
I think I’ve got it!

I showed that in my post above that
$$a\ =\ \frac{1-\sqrt3\tan18^\circ}{1-\tan18^\circ\tan54^\circ}.$$
But
$$\tan54^\circ\ =\ \frac1{\tan36^\circ}\ =\ \frac{1-\tan^218^\circ}{2\tan18^\circ}$$
$\implies\ \tan18^\circ\tan54^\circ\ =\ \dfrac{1-\tan^218^\circ}2$

$\implies\ 1-\tan18^\circ\tan54^\circ\ =\ \dfrac{1+\tan^218^\circ}2$

$\implies\ a\ =\ \dfrac{2(1-\sqrt3\tan18^\circ)}{1+\tan^218^\circ}$

$\implies\ 2-a\ =\ 2-\dfrac{2(1-\sqrt3\tan18^\circ)}{1+\tan^218^\circ}\ =\ \dfrac{2\tan18^\circ(\sqrt3+\tan18^\circ)}{1+\tan^218^\circ}.$

$\implies\ \dfrac a{2-a}\ =\ \dfrac{(1-\sqrt3\tan18^\circ)}{\sqrt3+\tan18^\circ}\cdot\dfrac1{\tan18^\circ}$.

Also
$$\tan{78^\circ}\ =\ \tan(60+18)^\circ\ =\ \frac{\sqrt3+\tan18^\circ}{1-\sqrt3\tan18^\circ}$$
and the quantity $\dfrac b{2-a}$ in my post above is supposed to be $\tan42^\circ$. So my entire solution reduces to proving the following:
$$\boxed{\tan42^\circ\ =\ \frac{\tan54^\circ}{\tan78^\circ\cdot\tan18^\circ}}.$$

It’s quite simple, really: just show that
$$\tan x^\circ\tan(60+x)^\circ\tan(60-x)^\circ\ =\ \tan(3x)^\circ.$$
Proof:
$$\begin{array}{rcl}\tan x^\circ\tan(60+x)^\circ\tan(60-x)^\circ &=& \tan x^\circ\cdot\dfrac{\sqrt3+\tan x^\circ}{1-\sqrt3\tan x^\circ}\cdot\dfrac{\sqrt3-\tan x^\circ}{1+\sqrt3\tan x^\circ} \\\\ {} &=& \dfrac{3\tan x^\circ-\tan^3x^\circ}{1-3\tan^2x^\circ} \\\\ {} &=& \tan(3x)^\circ.\end{array}$$
Now put $x=12$:
$$\tan12^\circ\tan72^\circ\tan48^\circ\ =\ \tan36^\circ.$$
Now use the fact that $\tan(90-\theta)^\circ=\dfrac1{\tan\theta^\circ}$:
$$\frac1{\tan78^\circ\tan18^\circ\tan42^\circ} =\ \frac1{\tan54^\circ}$$
$\implies\ \tan42^\circ\ =\ \dfrac{\tan54^\circ}{\tan78^\circ\cdot\tan18^\circ}$

– QED! (Clapping)
 
Olinguito said:
I think I’ve got it!

I showed that in my post above that
$$a\ =\ \frac{1-\sqrt3\tan18^\circ}{1-\tan18^\circ\tan54^\circ}.$$
But
$$\tan54^\circ\ =\ \frac1{\tan36^\circ}\ =\ \frac{1-\tan^218^\circ}{2\tan18^\circ}$$
$\implies\ \tan18^\circ\tan54^\circ\ =\ \dfrac{1-\tan^218^\circ}2$

$\implies\ 1-\tan18^\circ\tan54^\circ\ =\ \dfrac{1+\tan^218^\circ}2$

$\implies\ a\ =\ \dfrac{2(1-\sqrt3\tan18^\circ)}{1+\tan^218^\circ}$

$\implies\ 2-a\ =\ 2-\dfrac{2(1-\sqrt3\tan18^\circ)}{1+\tan^218^\circ}\ =\ \dfrac{2\tan18^\circ(\sqrt3+\tan18^\circ)}{1+\tan^218^\circ}.$

$\implies\ \dfrac a{2-a}\ =\ \dfrac{(1-\sqrt3\tan18^\circ)}{\sqrt3+\tan18^\circ}\cdot\dfrac1{\tan18^\circ}$.

Also
$$\tan{78^\circ}\ =\ \tan(60+18)^\circ\ =\ \frac{\sqrt3+\tan18^\circ}{1-\sqrt3\tan18^\circ}$$
and the quantity $\dfrac b{2-a}$ in my post above is supposed to be $\tan42^\circ$. So my entire solution reduces to proving the following:
$$\boxed{\tan42^\circ\ =\ \frac{\tan54^\circ}{\tan78^\circ\cdot\tan18^\circ}}.$$

It’s quite simple, really: just show that
$$\tan x^\circ\tan(60+x)^\circ\tan(60-x)^\circ\ =\ \tan(3x)^\circ.$$
Proof:
$$\begin{array}{rcl}\tan x^\circ\tan(60+x)^\circ\tan(60-x)^\circ &=& \tan x^\circ\cdot\dfrac{\sqrt3+\tan x^\circ}{1-\sqrt3\tan x^\circ}\cdot\dfrac{\sqrt3-\tan x^\circ}{1+\sqrt3\tan x^\circ} \\\\ {} &=& \dfrac{3\tan x^\circ-\tan^3x^\circ}{1-3\tan^2x^\circ} \\\\ {} &=& \tan(3x)^\circ.\end{array}$$
Now put $x=12$:
$$\tan12^\circ\tan72^\circ\tan48^\circ\ =\ \tan36^\circ.$$
Now use the fact that $\tan(90-\theta)^\circ=\dfrac1{\tan\theta^\circ}$:
$$\frac1{\tan78^\circ\tan18^\circ\tan42^\circ} =\ \frac1{\tan54^\circ}$$
$\implies\ \tan42^\circ\ =\ \dfrac{\tan54^\circ}{\tan78^\circ\cdot\tan18^\circ}$

– QED! (Clapping)


Hello,

It can be proved using sine and cosine theorem in a very short period of time and without unnecessary work.
 
Last edited:
Dhamnekar Winod said:
Hello,

It can be proved using sine and cosine theorem in a very short period of time and without unnecessary work.

Hi Dhamnekar Winod, can you enlighten us with your quick and neat solution?(Wondering)
 
I've been trying this with NO trigonometry.
Code:
                       F             A

               E

           
          D     C                 B
CD is extended to F (E is on AB) creating right triangle CFB.
Since angleBCF=48, then angleBFC=42.

I then extended BD to G (not shown in my poor diagram!),
such that angleGAB = 90.

Now if it could be shown that triangleABG is similar to triangleCFB,
then angleABD = 42.

But can't wrap this up...any ideas you guys?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K