MHB Challenge question on equilateral triangle: Prove ∠DBA=42°

Click For Summary
In an equilateral triangle ABC, point D is located inside such that ∠BAD = 54° and ∠BCD = 48°. The goal is to prove that ∠DBA = 42°. Participants discuss various methods, including the sine and cosine theorem, to find a simpler solution than the complicated calculations initially used. One user suggests extending lines to create right triangles and explore similarity to establish the necessary angle relationships. The discussion emphasizes finding a concise proof without excessive calculations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In an equilateral triangle $ABC$, let $D$ be a point inside the triangle such that $\angle BAD=54^\circ$ and $\angle BCD=48^\circ$. Prove that $\angle DBA=42^\circ$.
 
Mathematics news on Phys.org
I managed to get the answer using some complicated calculation – but given that the solution is a nice-looking answer, it’s likely much of the complicated calculation is unnecessary. I’m sure there is a less complicated solution than mine. (Wondering)

Since the problem involves only angles, the actual size of the equilateral triangle is immaterial; for convenience, let us take it to have side length $2$.

Let A, B, C, D have co-ordinates $(0,0)$, $(2,0)$, $(1,\sqrt3)$, $(a,b)$ respectively. Then we immediately have
$$b\ =\ a\tan54^\circ.$$
Let M be the midpoint of AB and N be the foot of the perpendicular from D to CM. Then we have $|\mathrm{DN}|=1-a$, $|\mathrm{CN}|=\sqrt3-b$, and $\angle\mathrm{DCN}=\angle\mathrm{DCB}-\angle\mathrm{NCB}=18^\circ$ and so
$$\tan18^\circ\ =\ \frac{1-a}{\sqrt3-b}\ =\ \frac{1-a}{\sqrt3-a\tan54^\circ}$$
$\displaystyle\implies\ a\ =\ \frac{1-\sqrt3\tan18^\circ}{1-\tan18^\circ\tan54^\circ}.$

Finally, the positive value of the slope of the line segment DB, which is $\tan\angle\mathrm{DBA}$, is
$$\frac b{2-a}\ =\ \frac{a\tan54^\circ}{2-a}$$
and substituting for $a$ should give this value as the tangent of 42° (calculator possibly needed). (Thinking)
 
Last edited:
I think I’ve got it!

I showed that in my post above that
$$a\ =\ \frac{1-\sqrt3\tan18^\circ}{1-\tan18^\circ\tan54^\circ}.$$
But
$$\tan54^\circ\ =\ \frac1{\tan36^\circ}\ =\ \frac{1-\tan^218^\circ}{2\tan18^\circ}$$
$\implies\ \tan18^\circ\tan54^\circ\ =\ \dfrac{1-\tan^218^\circ}2$

$\implies\ 1-\tan18^\circ\tan54^\circ\ =\ \dfrac{1+\tan^218^\circ}2$

$\implies\ a\ =\ \dfrac{2(1-\sqrt3\tan18^\circ)}{1+\tan^218^\circ}$

$\implies\ 2-a\ =\ 2-\dfrac{2(1-\sqrt3\tan18^\circ)}{1+\tan^218^\circ}\ =\ \dfrac{2\tan18^\circ(\sqrt3+\tan18^\circ)}{1+\tan^218^\circ}.$

$\implies\ \dfrac a{2-a}\ =\ \dfrac{(1-\sqrt3\tan18^\circ)}{\sqrt3+\tan18^\circ}\cdot\dfrac1{\tan18^\circ}$.

Also
$$\tan{78^\circ}\ =\ \tan(60+18)^\circ\ =\ \frac{\sqrt3+\tan18^\circ}{1-\sqrt3\tan18^\circ}$$
and the quantity $\dfrac b{2-a}$ in my post above is supposed to be $\tan42^\circ$. So my entire solution reduces to proving the following:
$$\boxed{\tan42^\circ\ =\ \frac{\tan54^\circ}{\tan78^\circ\cdot\tan18^\circ}}.$$

It’s quite simple, really: just show that
$$\tan x^\circ\tan(60+x)^\circ\tan(60-x)^\circ\ =\ \tan(3x)^\circ.$$
Proof:
$$\begin{array}{rcl}\tan x^\circ\tan(60+x)^\circ\tan(60-x)^\circ &=& \tan x^\circ\cdot\dfrac{\sqrt3+\tan x^\circ}{1-\sqrt3\tan x^\circ}\cdot\dfrac{\sqrt3-\tan x^\circ}{1+\sqrt3\tan x^\circ} \\\\ {} &=& \dfrac{3\tan x^\circ-\tan^3x^\circ}{1-3\tan^2x^\circ} \\\\ {} &=& \tan(3x)^\circ.\end{array}$$
Now put $x=12$:
$$\tan12^\circ\tan72^\circ\tan48^\circ\ =\ \tan36^\circ.$$
Now use the fact that $\tan(90-\theta)^\circ=\dfrac1{\tan\theta^\circ}$:
$$\frac1{\tan78^\circ\tan18^\circ\tan42^\circ} =\ \frac1{\tan54^\circ}$$
$\implies\ \tan42^\circ\ =\ \dfrac{\tan54^\circ}{\tan78^\circ\cdot\tan18^\circ}$

– QED! (Clapping)
 
Olinguito said:
I think I’ve got it!

I showed that in my post above that
$$a\ =\ \frac{1-\sqrt3\tan18^\circ}{1-\tan18^\circ\tan54^\circ}.$$
But
$$\tan54^\circ\ =\ \frac1{\tan36^\circ}\ =\ \frac{1-\tan^218^\circ}{2\tan18^\circ}$$
$\implies\ \tan18^\circ\tan54^\circ\ =\ \dfrac{1-\tan^218^\circ}2$

$\implies\ 1-\tan18^\circ\tan54^\circ\ =\ \dfrac{1+\tan^218^\circ}2$

$\implies\ a\ =\ \dfrac{2(1-\sqrt3\tan18^\circ)}{1+\tan^218^\circ}$

$\implies\ 2-a\ =\ 2-\dfrac{2(1-\sqrt3\tan18^\circ)}{1+\tan^218^\circ}\ =\ \dfrac{2\tan18^\circ(\sqrt3+\tan18^\circ)}{1+\tan^218^\circ}.$

$\implies\ \dfrac a{2-a}\ =\ \dfrac{(1-\sqrt3\tan18^\circ)}{\sqrt3+\tan18^\circ}\cdot\dfrac1{\tan18^\circ}$.

Also
$$\tan{78^\circ}\ =\ \tan(60+18)^\circ\ =\ \frac{\sqrt3+\tan18^\circ}{1-\sqrt3\tan18^\circ}$$
and the quantity $\dfrac b{2-a}$ in my post above is supposed to be $\tan42^\circ$. So my entire solution reduces to proving the following:
$$\boxed{\tan42^\circ\ =\ \frac{\tan54^\circ}{\tan78^\circ\cdot\tan18^\circ}}.$$

It’s quite simple, really: just show that
$$\tan x^\circ\tan(60+x)^\circ\tan(60-x)^\circ\ =\ \tan(3x)^\circ.$$
Proof:
$$\begin{array}{rcl}\tan x^\circ\tan(60+x)^\circ\tan(60-x)^\circ &=& \tan x^\circ\cdot\dfrac{\sqrt3+\tan x^\circ}{1-\sqrt3\tan x^\circ}\cdot\dfrac{\sqrt3-\tan x^\circ}{1+\sqrt3\tan x^\circ} \\\\ {} &=& \dfrac{3\tan x^\circ-\tan^3x^\circ}{1-3\tan^2x^\circ} \\\\ {} &=& \tan(3x)^\circ.\end{array}$$
Now put $x=12$:
$$\tan12^\circ\tan72^\circ\tan48^\circ\ =\ \tan36^\circ.$$
Now use the fact that $\tan(90-\theta)^\circ=\dfrac1{\tan\theta^\circ}$:
$$\frac1{\tan78^\circ\tan18^\circ\tan42^\circ} =\ \frac1{\tan54^\circ}$$
$\implies\ \tan42^\circ\ =\ \dfrac{\tan54^\circ}{\tan78^\circ\cdot\tan18^\circ}$

– QED! (Clapping)


Hello,

It can be proved using sine and cosine theorem in a very short period of time and without unnecessary work.
 
Last edited:
Dhamnekar Winod said:
Hello,

It can be proved using sine and cosine theorem in a very short period of time and without unnecessary work.

Hi Dhamnekar Winod, can you enlighten us with your quick and neat solution?(Wondering)
 
I've been trying this with NO trigonometry.
Code:
                       F             A

               E

           
          D     C                 B
CD is extended to F (E is on AB) creating right triangle CFB.
Since angleBCF=48, then angleBFC=42.

I then extended BD to G (not shown in my poor diagram!),
such that angleGAB = 90.

Now if it could be shown that triangleABG is similar to triangleCFB,
then angleABD = 42.

But can't wrap this up...any ideas you guys?
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K