# Characteristic and minimal polynomials

## Homework Statement

Let V be a finite dimensional complex vector space and T be the linear operator of V. Prove that the following are equivalent

a V has a basis consisting of eigenvectors of T.
b T can be represented by a diagonal matrix.
c all the eigenvalues of T have multiplicity one.
d. the Characteristic polynomial of T equals the minimal polynomial of T.

## Homework Equations

Not really applicable

## The Attempt at a Solution

Ok so I proved A implies B, However, I feel that B does not imply C.

I just want to see if my argument is valid. because the identity matrix, is definitely diaganol however, it does not have a multiplicity of One. Can I assume wlog that T has distinct eigenvalues along the main diaganol?

Dick
Homework Helper
You are quite right. But I wouldn't assume wlog. That looses generality. B doesn't imply C period. I think whoever wrote the problem up had a memory lapse or forgot to state an assumption. You could assume they forgot that assumption and proceed from there.

Last edited:
HallsofIvy
Homework Helper

## Homework Statement

Let V be a finite dimensional complex vector space and T be the linear operator of V. Prove that the following are equivalent

a V has a basis consisting of eigenvectors of T.
b T can be represented by a diagonal matrix.
c all the eigenvalues of T have multiplicity one.
??? There are two "multiplicities", the geometric multiplicity (number of independent eigenvectors corresponding to the eigenvalue) and algebraic multiplicity (multiplicity as a root of the characteristic polynomial). But neither of those must be one in order that T can be represented by a diagonal matrix, only that, for each eigenvalue, the two multiplicities be the same.

d. the Characteristic polynomial of T equals the minimal polynomial of T.

## Homework Equations

Not really applicable

## The Attempt at a Solution

Ok so I proved A implies B, However, I feel that B does not imply C.

I just want to see if my argument is valid. because the identity matrix, is definitely diaganol however, it does not have a multiplicity of One. Can I assume wlog that T has distinct eigenvalues along the main diaganol?