Charge-Conjugation property

BobaJ
Messages
38
Reaction score
0
Homework Statement
I have to show, the last equality in the charge-conjugation property of the current $$C\bar{\Psi}_a\gamma^{\mu}\Psi_bC^{-1}=\bar{\Psi}_a^c\gamma^{\mu}\Psi_b^c=-(\bar{\Psi}_a\gamma^{\mu}\Psi_b)^\dagger$$
Relevant Equations
##\bar{\Psi}^c=-\Psi^TC^{-1}##

##\Psi^c=C\bar{\Psi}^T##

##C^{-1}\gamma^{\mu}C=-\gamma^{\mu T}##

##C=-C^{-1}=-C^\dagger=-C^T##

And I have to use that the fermionic quantum fields ##\Psi_a## and ##\Psi_b## anticommute.
I'm probably just complicating things, but I'm a little bit stuck with this problem.

I started with just plugging in the definitions for ##\bar{\Psi}_a^c## and ##\Psi_b^c##. So I get

$$\bar{\Psi}_a^c\gamma^{\mu}\Psi_b^c=-\Psi_a^TC^{-1}\gamma^{\mu}C\bar{\Psi}_b^T$$.

After this I used ##C^{-1}\gamma^{\mu}C=-\gamma^{\mu T}## to get:

$$=\Psi-a^T\gamma^{\mu T}\bar{\Psi}_b^T$$.

Is this the right way? How do I go onto show the equality? Thank you for your help.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top