Charge-Conjugation property

BobaJ
Messages
38
Reaction score
0
Homework Statement
I have to show, the last equality in the charge-conjugation property of the current $$C\bar{\Psi}_a\gamma^{\mu}\Psi_bC^{-1}=\bar{\Psi}_a^c\gamma^{\mu}\Psi_b^c=-(\bar{\Psi}_a\gamma^{\mu}\Psi_b)^\dagger$$
Relevant Equations
##\bar{\Psi}^c=-\Psi^TC^{-1}##

##\Psi^c=C\bar{\Psi}^T##

##C^{-1}\gamma^{\mu}C=-\gamma^{\mu T}##

##C=-C^{-1}=-C^\dagger=-C^T##

And I have to use that the fermionic quantum fields ##\Psi_a## and ##\Psi_b## anticommute.
I'm probably just complicating things, but I'm a little bit stuck with this problem.

I started with just plugging in the definitions for ##\bar{\Psi}_a^c## and ##\Psi_b^c##. So I get

$$\bar{\Psi}_a^c\gamma^{\mu}\Psi_b^c=-\Psi_a^TC^{-1}\gamma^{\mu}C\bar{\Psi}_b^T$$.

After this I used ##C^{-1}\gamma^{\mu}C=-\gamma^{\mu T}## to get:

$$=\Psi-a^T\gamma^{\mu T}\bar{\Psi}_b^T$$.

Is this the right way? How do I go onto show the equality? Thank you for your help.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top