Charge-Conjugation property

Click For Summary
The discussion revolves around the charge-conjugation property in quantum field theory, specifically focusing on the manipulation of Dirac spinors. The user starts by substituting definitions for charge-conjugated spinors and arrives at an expression involving gamma matrices. They then apply a transformation property of the gamma matrices, leading to a new expression. The user seeks clarification on whether their approach is correct and how to proceed to demonstrate the equality. The inquiry highlights the complexities of working with charge-conjugated fields and the need for precise mathematical handling.
BobaJ
Messages
38
Reaction score
0
Homework Statement
I have to show, the last equality in the charge-conjugation property of the current $$C\bar{\Psi}_a\gamma^{\mu}\Psi_bC^{-1}=\bar{\Psi}_a^c\gamma^{\mu}\Psi_b^c=-(\bar{\Psi}_a\gamma^{\mu}\Psi_b)^\dagger$$
Relevant Equations
##\bar{\Psi}^c=-\Psi^TC^{-1}##

##\Psi^c=C\bar{\Psi}^T##

##C^{-1}\gamma^{\mu}C=-\gamma^{\mu T}##

##C=-C^{-1}=-C^\dagger=-C^T##

And I have to use that the fermionic quantum fields ##\Psi_a## and ##\Psi_b## anticommute.
I'm probably just complicating things, but I'm a little bit stuck with this problem.

I started with just plugging in the definitions for ##\bar{\Psi}_a^c## and ##\Psi_b^c##. So I get

$$\bar{\Psi}_a^c\gamma^{\mu}\Psi_b^c=-\Psi_a^TC^{-1}\gamma^{\mu}C\bar{\Psi}_b^T$$.

After this I used ##C^{-1}\gamma^{\mu}C=-\gamma^{\mu T}## to get:

$$=\Psi-a^T\gamma^{\mu T}\bar{\Psi}_b^T$$.

Is this the right way? How do I go onto show the equality? Thank you for your help.
 
So is there some elegant way to do this or am I just supposed to follow my nose and sub the Taylor expansions for terms in the two boost matrices under the assumption ##v,w\ll 1##, then do three ugly matrix multiplications and get some horrifying kludge for ##R## and show that the product of ##R## and its transpose is the identity matrix with det(R)=1? Without loss of generality I made ##\mathbf{v}## point along the x-axis and since ##\mathbf{v}\cdot\mathbf{w} = 0## I set ##w_1 = 0## to...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
95
Views
7K
Replies
15
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K