MHB Charlene's question at Yahoo Answers regarding related rates

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Related rates
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Rate of change of theta?

An airplane is flying at a constant altitude of 8 miles over a radar at a rate of 450mph. At what rate is the angle theta changing when s=25?

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Charlene,

I would first draw a diagram to represent the problem. I will assume the quantity $s$ represents the distance from the radar station directly to the plane. $R$ represents the location of the radar station, and $P$ the location of the plane. I have let $h$ represent the constant altitude of the plane. All linear measures are in miles.

View attachment 970

Since we are given:

(1) $$\left|\frac{dx}{dt} \right|=v\,\therefore\,\frac{dx}{dt}=\pm v$$

where $v$ is the speed of the plane, and we know $h$, we want to relate $\theta$, $x$ and $h$. We may do so by using the definition of the tangent function as follows:

$$\tan(\theta)=\frac{h}{x}$$

Now, implicitly differentiating with respect to time $t$, we obtain:

$$\sec^2(\theta)\frac{d\theta}{dt}=-\frac{h}{x^2}\cdot\frac{dx}{dt}$$

Multiplying through by $$\cos^2(\theta)$$ and using (1) we have:

$$\frac{d\theta}{dt}=\pm\frac{hv\cos^2(\theta)}{x^2}$$

Now, from our diagram, we see that:

$$\cos(\theta)=\frac{x}{s}$$

and so we find:

$$\frac{d\theta}{dt}=\pm\frac{hv\left(\frac{x}{s} \right)^2}{x^2}=\pm\frac{hv}{s^2}$$

As we are only asked for the magnitude of the rate of change in $\theta$ with respect to time, we may write:

$$\left|\frac{d\theta}{dt} \right|=\frac{hv}{s^2}$$

Now, using the given data:

$$h=8,\,v=450,\,s=25$$

we find, in radians per hour:

$$\left|\frac{d\theta}{dt} \right|=\frac{8\cdot450}{25^2}=\frac{144}{25}$$
 

Attachments

  • charlene.jpg
    charlene.jpg
    3.2 KB · Views: 86
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top