Christoffel Symbols for Schwarzschild Metric (?)

In summary, the conversation discusses the Schwarzschild Metric components, the Christoffel Symbol components, the Geodesic Equation, the zero-gravity limit, and the weak-gravity limit in relation to general relativity. It also provides relevant links and resources for further reading.
  • #1
Widdekind
132
0
ROUGH DRAFT

I have a beginner's basic question:

1. Schwarzschild Metric components

Let [tex]\epsilon[/tex] = rs / r, where rs is the Schwarzschild Radius. Then, as is is well-known:

[tex]g_{00} = 1 - \epsilon[/tex]
[tex]g_{11} = - \left( 1 - \epsilon \right)^{-1}[/tex]
[tex]g_{22} = - r^{2}[/tex]
[tex]g_{33} = - r^{2} \; sin^{2}(\theta)[/tex]​

B/c this Schwarzschild Metric Tensor gij is Diagonal, its Inverse gij is also Diagonal, w/ components equal to "one over" those above.2. Christoffel Symbol components

As is well-known:

[tex]\Gamma^{i}_{k\ell} = {1 \over 2} g^{im} (g_{mk,\ell} + g_{m\ell,k} - g_{k\ell,m})[/tex]​

But, since the Schwarzschild Metric Tensor is diagonal, [tex]g^{im} = \delta^{im} \; g^{ii}[/tex]. So:

[tex]\Gamma^{i}_{k\ell} = {1 \over 2} g^{ii} (g_{ik,\ell} + g_{i\ell,k} - g_{k\ell,i}) + 0[/tex]​

Thus, in this Schwarzschild Polar Coordinate System, w.h.t.:

[tex]\Gamma^{0}_{k\ell} = {1 \over 2} g^{00} \[ \left( \begin{array}{cccc}
0 & g_{00,1} & 0 & 0 \\
g_{00,1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{array} \right)\][/tex]

[tex]\Gamma^{1}_{k\ell} = {1 \over 2} g^{11} \[ \left( \begin{array}{cccc}
-g_{00,1} & 0 & 0 & 0 \\
0 & g_{11,1} & 0 & 0 \\
0 & 0 & -g_{22,1} & 0 \\
0 & 0 & 0 & -g_{33,1} \end{array} \right)\][/tex]

[tex]\Gamma^{2}_{k\ell} = {1 \over 2} g^{22} \[ \left( \begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & g_{22,1} & 0 \\
0 & g_{22,1} & 0 & 0 \\
0 & 0 & 0 & -g_{33,2} \end{array} \right)\][/tex]

[tex]\Gamma^{3}_{k\ell} = {1 \over 2} g^{33} \[ \left( \begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & g_{33,1} \\
0 & 0 & 0 & g_{33,2} \\
0 & g_{33,1} & g_{33,2} & 0 \end{array} \right)\][/tex]​

Or, noting that [tex]\partial \epsilon / \partial r = - \epsilon / r[/tex], w.h.t.:
[tex]\Gamma^{0}_{k\ell} = {1 \over 2} (1 - \epsilon)^{-1} \[ \left( \begin{array}{cccc}
0 & \epsilon / r & 0 & 0 \\
\epsilon / r & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{array} \right)\][/tex]

[tex]\Gamma^{1}_{k\ell} = -{1 \over 2} \left( 1 - \epsilon \right) \[ \left( \begin{array}{cccc}
-\epsilon / r & 0 & 0 & 0 \\
0 & \left( 1 - \epsilon \right)^{-2}(\epsilon / r) & 0 & 0 \\
0 & 0 & 2 r & 0 \\
0 & 0 & 0 & 2 r \; sin^{2}(\theta) \end{array} \right)\][/tex]

[tex]\Gamma^{2}_{k\ell} = -{1 \over 2} r^{-2} \[ \left( \begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -2 r & 0 \\
0 & -2 r & 0 & 0 \\
0 & 0 & 0 & r^{2} \; sin(2 \theta) \end{array} \right)\][/tex]

[tex]\Gamma^{3}_{k\ell} = -{1 \over 2} r^{-2} \; sin^{-2}(\theta) \[ \left( \begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 r \; sin^{2}(\theta) \\
0 & 0 & 0 & -r^{2} \; sin(2 \theta) \\
0 & -2 r \; sin^{2}(\theta) & -r^{2} \; sin(2 \theta) & 0 \end{array} \right)\][/tex]​
3. Geodesic Equation (?!)

[tex]{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}
c t \\
r \\
\theta \\
\phi \end{array} \right) + \left( \begin{array}{c}
(1 - \epsilon)^{-1} {\epsilon \over r} {\partial (ct) \over \partial s} {\partial r \over \partial s} \\
{1 \over 2} \left( 1 - \epsilon \right) \left( {\epsilon \over r}{\partial (ct) \over \partial s}^{2} - \left( 1 - \epsilon \right)^{-2}{\epsilon \over r}{\partial r \over \partial s}^{2} - 2 r {\partial \theta \over \partial s}^{2} - 2 r \; sin^{2}(\theta) {\partial \phi \over \partial s}^{2} \right) \\
{2 \over r}{\partial r \over \partial s} {\partial \theta \over \partial s} - {sin(2 \theta) \over 2}{\partial (\phi) \over \partial s}^{2} \\
{2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} + 2 cot(\theta){\partial \theta \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0[/tex]4. Zero-Gravity limit (??)

If [tex]\epsilon = 0[/tex], w.h.t.:

[tex]{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}
c t \\
r \\
\theta \\
\phi \end{array} \right) + \left( \begin{array}{c}
0 \\
- r {\partial (\theta) \over \partial s}^{2} - r \; sin^{2}(\theta) {\partial (\phi) \over \partial s}^{2} \\
{2 \over r}{\partial r \over \partial s} {\partial \theta \over \partial s} + {sin(2 \theta) \over 2}{\partial (\phi) \over \partial s}^{2} \\
{2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} + 2 cot(\theta){\partial \theta \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0[/tex]

Further restricting [tex]\theta = {\pi \over 2}[/tex], w.h.t.:

[tex]{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}
c t \\
r \\
\theta \\
\phi \end{array} \right) + \left( \begin{array}{c}
0 \\
- r {\partial (\phi) \over \partial s}^{2} \\
0 \\
{2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0[/tex]

Is this the equation of a straight line in Polar Coordinates ?5. Weak-Gravity limit (??)

If [tex]\epsilon << 1[/tex], w.h.t.:

[tex]{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}
c t \\
r \\
\theta \\
\phi \end{array} \right) + \left( \begin{array}{c}
{\epsilon \over r} {\partial (ct) \over \partial s} {\partial r \over \partial s} \\
{1 \over 2} \left( {\epsilon \over r}{\partial (ct) \over \partial s}^{2} + {\epsilon \over r}{\partial (r) \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r {\partial (\theta) \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r \; sin^{2}(\theta) {\partial (\phi) \over \partial s}^{2} \right) \\
{2 \over r}{\partial r \over \partial s} {\partial \theta \over \partial s} + {sin(2 \theta) \over 2}{\partial (\phi) \over \partial s}^{2} \\
{2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} + 2 cot(\theta){\partial \theta \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0[/tex]

Further restricting [tex]\theta = {\pi \over 2}[/tex], w.h.t.:

[tex]{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}
c t \\
r \\
\theta \\
\phi \end{array} \right) + \left( \begin{array}{c}
{\epsilon \over r} {\partial (ct) \over \partial s} {\partial r \over \partial s} \\
{1 \over 2} \left( {\epsilon \over r}{\partial (ct) \over \partial s}^{2} + {\epsilon \over r}{\partial (r) \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r {\partial (\phi) \over \partial s}^{2} \right) \\
0 \\
{2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0[/tex]

Does this reduce to Newton's equations ?
 
Last edited:
Physics news on Phys.org
  • #2
Last edited:
  • #3
Verifying Geodesic Equation by applying Euler-Lagrange Equation to Scwarzschild Metric-derived Lagrangian

We apply the Euler-Lagrange Equation to the Scwarzschild Metric-derived Lagrangian:

[tex]L \equiv g_{\mu \nu} {d x^{\mu} \over ds} {d x^{\nu} \over ds} = 1[/tex]​

Explicitly, w.h.t.:

[tex]L \equiv (1 - \epsilon) c^{2} {dt \over ds}^{2} - (1 - \epsilon)^{-1} {dr \over ds}^{2} - r^{2} {d \theta \over ds}^{2} - r^{2} sin^{2}(\theta) {d \phi \over ds}^{2}[/tex]​

Applying the Euler-Lagrange Equation:

[tex]{\partial L \over \partial x^{\mu}} - {d \over ds}{\partial L \over \partial ({\partial x^{\mu} \over \partial s})} = 0 [/tex]​

w.h.t.:

[tex]\left( \begin{array}{c}
0 \\
c^{2} {\epsilon \over r}{\partial t \over \partial s}^{2} + (1 - \epsilon)^{-2} {\epsilon \over r}{\partial r \over \partial s}^{2} - 2 r {\partial \theta \over \partial s}^{2} - 2 r sin^{2}(\theta) {\partial \phi \over \partial s}^{2}\\
- r^{2} sin(2 \theta) {\partial \phi \over \partial s}^{2} \\
0 \end{array} \right) - \left( \begin{array}{c}
2 c^{2} {\epsilon \over r} {\partial r \over \partial s}{\partial t \over \partial s} + 2 c^{2} (1 - \epsilon) {\partial^{2} t \over \partial s^{2}} \\
2 (1 - \epsilon)^{-2} {\epsilon \over r}{\partial r \over \partial s}^{2} - 2 (1 - \epsilon)^{-1}{\partial^{2} r \over \partial s^{2}} \\
-4 r {\partial r \over \partial s}{\partial \theta \over \partial s} - 2 r^{2}{\partial^{2} \theta \over \partial s^{2}} \\
-2 r^{2} sin^{2}(\theta){\partial^{2} \phi \over \partial s^{2}} - 2 r^{2} sin(2 \theta) {\partial \theta \over \partial s}{\partial \phi \over \partial s} - 4 r {\partial r \over \partial s}{\partial \phi \over \partial s} \end{array} \right) = 0[/tex]​

This seems to be substantially similar to the above-derived Geodesic Equation (so far).
 
Last edited:
  • #4
UPDATE

4. Zero-Gravity limit (??)

If [tex]\epsilon = 0[/tex], w.h.t.:

[tex]{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}
c t \\
r \\
\theta \\
\phi \end{array} \right) + \left( \begin{array}{c}
0\\
- r {\partial \theta \over \partial s}^{2} - r \; sin^{2}(\theta) {\partial \phi \over \partial s}^{2} \\
{2 \over r}{\partial r \over \partial s} {\partial \theta \over \partial s} - {sin(2 \theta) \over 2} {\partial (\phi) \over \partial s}^{2} \\
{2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} + 2 cot(\theta){\partial \theta \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0[/tex]

Further restricting [tex]\theta = {\pi \over 2}[/tex], w.h.t.:

[tex]{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}
c t \\
r \\
\theta \\
\phi \end{array} \right) + \left( \begin{array}{c}
0 \\
- r {\partial (\phi) \over \partial s}^{2} \\
0 \\
{2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0[/tex]

Is this the equation of a straight line in Polar Coordinates ?


5. Weak-Gravity limit (??)

If [tex]\epsilon << 1[/tex], w.h.t.:

[tex]{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}
c t \\
r \\
\theta \\
\phi \end{array} \right) + \left( \begin{array}{c}
{\epsilon \over r} {\partial (ct) \over \partial s} {\partial r \over \partial s} \\
{1 \over 2} \left( {\epsilon \over r}{\partial (ct) \over \partial s}^{2} - {\epsilon \over r}{\partial r \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r {\partial \theta \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r \; sin^{2}(\theta) {\partial \phi \over \partial s}^{2} \right) \\
{2 \over r}{\partial r \over \partial s} {\partial \theta \over \partial s} + {sin(2 \theta) \over 2}{\partial \phi \over \partial s}^{2} \\
{2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} + 2 cot(\theta){\partial \theta \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0[/tex]

Further restricting [tex]\theta = {\pi \over 2}[/tex], w.h.t.:


[tex]{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}
c t \\
r \\
\theta \\
\phi \end{array} \right) + \left( \begin{array}{c}
{\epsilon \over r} {\partial (ct) \over \partial s} {\partial r \over \partial s} \\
{1 \over 2} \left( {\epsilon \over r}{\partial (ct) \over \partial s}^{2} - {\epsilon \over r}{\partial r \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r {\partial \phi \over \partial s}^{2} \right) \\
0 \\
{2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0[/tex]

Does this reduce to Newton's equations ?
 
  • #5
There doesn't really appear to be a question here, which is probably why you haven't received any replies. If I were you, I would re-check your first calculation, and compare to well known results. (See, for example, http://arxiv.org/abs/0904.4184 for a useful catalogue of spacetimes).
 

What are Christoffel Symbols for Schwarzschild Metric?

Christoffel Symbols for Schwarzschild Metric are a set of mathematical objects used in the study of general relativity. They are used to describe the curvature of spacetime around a massive object, such as a black hole.

How are Christoffel Symbols calculated for Schwarzschild Metric?

The calculation of Christoffel Symbols for Schwarzschild Metric involves taking the second derivatives of the metric tensor, which describes the geometry of spacetime. This calculation can be quite complex and requires a good understanding of tensor calculus.

What information do Christoffel Symbols provide about Schwarzschild Metric?

Christoffel Symbols provide information about the curvature of spacetime in the vicinity of a massive object, such as a black hole. They can also be used to calculate the geodesic equations, which describe the paths of particles moving through this curved spacetime.

How do Christoffel Symbols relate to Einstein's field equations?

Christoffel Symbols are used in the calculation of Einstein's field equations, which describe the relationship between the curvature of spacetime and the distribution of matter and energy within it. They are an important tool for understanding the effects of gravity in general relativity.

Can Christoffel Symbols for Schwarzschild Metric be applied to other spacetime geometries?

Yes, Christoffel Symbols for Schwarzschild Metric can be applied to other spacetime geometries, such as the Kerr metric for rotating black holes. They can also be used to study the curvature of spacetime in other situations, such as gravitational waves or the expanding universe.

Similar threads

  • Special and General Relativity
Replies
11
Views
1K
  • Special and General Relativity
Replies
14
Views
786
  • Special and General Relativity
Replies
4
Views
257
  • Special and General Relativity
Replies
11
Views
133
  • Special and General Relativity
Replies
4
Views
1K
  • Special and General Relativity
Replies
8
Views
1K
  • Special and General Relativity
Replies
4
Views
1K
  • Special and General Relativity
Replies
16
Views
2K
  • Special and General Relativity
Replies
9
Views
1K
Replies
10
Views
861
Back
Top