If we have any two orthonormal vectors A and B in R^2 and we wish to describe the circle they create under rigid rotation (i.e. they rotate at a fixed point and their length is preserved), how can we describe any point along this (unit) circle using a linear combination of A and B? I was thinking that it would be something along the lines of A*cos(θ) + B*sin(θ), but I'm not too sure, for example why not use A*sin(θ)+B*cos(θ). Regardless, I know that any point along this circle can be found because A and B are linearly independent and span all of R^2. I suppose what I'm really interested in, is computations that restrict to this "internal frame", this unit circle (not necessarily centered at(0,0)).(adsbygoogle = window.adsbygoogle || []).push({});

I feel this is very much related to the idea that a rotation matrix like [cosθ, -sinθ ; sinθ , cosθ] can rotation a pair of numbers (x,y) to a new pair (x',y') my treating (x,y) as a vector and applying the matrix.

At the same time though, this isn't quite my problem; I'm not starting with anything and then rotating it; I have a basis and want to construct a vector. Actually, my full problem (too long to describe here) is embedded in R^3 but this is a subproblem restricted to a 2-dimensional space spanned by A and B.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Circular coordinate space using an orthonormal basis

**Physics Forums | Science Articles, Homework Help, Discussion**