Circular Motion: Calc Centripetal Force on Amoeba

Click For Summary
SUMMARY

The discussion focuses on calculating the centripetal force acting on a 2.00x10^-8 kg amoeba in a centrifuge with a period of 1.2x10^-3 s and a radius of 0.15 m. The correct formula for centripetal acceleration is established as ac = (4π²r) / T², which leads to the centripetal force equation Fc = m(4π²r) / T². The initial miscalculation of velocity (V = 27.21) was corrected, resulting in the accurate centripetal force of 8.22 x 10^-2 N. The discussion emphasizes the importance of using the correct formulas without unnecessary intermediate steps.

PREREQUISITES
  • Understanding of centripetal force and acceleration
  • Familiarity with the equations of circular motion
  • Knowledge of basic physics concepts such as mass and period
  • Ability to manipulate algebraic equations
NEXT STEPS
  • Study the derivation of centripetal acceleration formulas
  • Learn about angular velocity and its relationship to circular motion
  • Explore practical applications of centripetal force in laboratory settings
  • Investigate the effects of varying radius and mass on centripetal force
USEFUL FOR

Physics students, educators, and anyone interested in understanding the principles of circular motion and centripetal force calculations.

brentwoodbc
Messages
62
Reaction score
0

Homework Statement



a test tube rotates in a centrifuge with a period of 1.2x10^-3s. The bottom of the test tube travels in a circular path of radius .15 m. with the centripetal force on a 2.00x10^-8kg amoeba at the bottom of the tube.




The Attempt at a Solution



ac=v^2/r=(4pi^2r)/T
cross multiplied and got.
v^2x(1.2x10^-3)=4pi^2x(1.5^2)
divided
and solved for velocity and I got.
V=27.21



then fc=(m2v^2)/r
fc=(2x10^-8)x(27.210^2)/.15
fc=9.87x10^5?
supposed to be 8.22x10^2


THanks.
 
Physics news on Phys.org
brentwoodbc said:
ac=v^2/r=(4pi^2r)/T
cross multiplied and got.
v^2x(1.2x10^-3)=4pi^2x(1.5^2)
divided
and solved for velocity and I got.
V=27.21
Two problems:
(1) That equation is not quite right. The right hand side should be: (4pi^2r)/(T^2)
(2) Why did you solve for V? What you want is v^2/r, which is given directly by the (corrected) right hand side.
 
It's not clear what the question is asking.

If you're looking for the force then you could start by finding the linear velocity. Just think distance divided by time and the circumference of the circle that the end of the tube is moving along.

You have a formula for the acceleration in terms of v and r. Compare this to Newton's second law and you should be able to get the accelerating (centripetal) force in terms of v and r as well.
 
brentwoodbc said:

Homework Statement



a test tube rotates in a centrifuge with a period of 1.2x10^-3s. The bottom of the test tube travels in a circular path of radius .15 m. with the centripetal force on a 2.00x10^-8kg amoeba at the bottom of the tube.

The Attempt at a Solution



ac=v^2/r=(4pi^2r)/T
cross multiplied and got.
v^2x(1.2x10^-3)=4pi^2x(1.5^2)
divided
and solved for velocity and I got.
V=27.21

then fc=(m2v^2)/r
fc=(2x10^-8)x(27.210^2)/.15
fc=9.87x10^5?
supposed to be 8.22x10^2

THanks.

Or more directly for the same result

F = m*ω2*r

where ω = 2π/T

F = m*(2π/T)2*r

Edit: I think the correct answer should have a (-) exponent ?
 
Last edited:
Doc Al said:
Two problems:
(1) That equation is not quite right. The right hand side should be: (4pi^2r)/(T^2)
(2) Why did you solve for V? What you want is v^2/r, which is given directly by the (corrected) right hand side.
Thanks
You are correct, The T^2 was my mistake. I have the right answer now (8.22 x 10^-2)

I do not understand what you mean by just using the right side?
ac=(4pi^2r)/T
there's no v there.
I solved for v to use the formula fc = (m2v^2)/r
 
brentwoodbc said:
Thanks
You are correct, The T^2 was my mistake. I have the right answer now (8.22 x 10^-2)
I didn't check your calculation. Was it just a typo?

I do not understand what you mean by just using the right side?
ac=(4pi^2r)/T
there's no v there.
I solved for v to use the formula fc = (m2v^2)/r
You started with the equation: ac=v^2/r=(4pi^2r)/T^2
What you need (to move to the next step) is v^2/r, which equals (4pi^2r)/T^2. You don't need to know V explicitly:
ac=v^2/r=(4pi^2r)/T^2

thus:
Fc = mac = mv^2/r= m(4pi^2r)/T^2

You could go right to the answer using only r and T, which were given.
 
Doc Al said:
I didn't check your calculation. Was it just a typo?


You started with the equation: ac=v^2/r=(4pi^2r)/T^2
What you need (to move to the next step) is v^2/r, which equals (4pi^2r)/T^2. You don't need to know V explicitly:
ac=v^2/r=(4pi^2r)/T^2

thus:
Fc = mac = mv^2/r= m(4pi^2r)/T^2

You could go right to the answer using only r and T, which were given.

Oh in the sense f=ma. that makes sense.
Thank you.
 

Similar threads

Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
11
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
Replies
6
Views
4K