PeterDonis
Mentor
- 49,312
- 25,345
jlcd said:if you express|LIVE⟩ and |DEAD⟩ as products of a state of the cat ("live" or "dead") and a state of the cat's environment ("observed to be live, etc." or "observed to be dead, etc."). So now the state of the overall system is a sum of products of states of two subsystems, i.e., an entangled state.
You don't even need the environment; that's the point. The cat has so many degrees of freedom all by itself, which can't possibly remain coherent with each other, that the cat states "alive" and "dead" are already decohered. Or, to put it another way, the parts of the cat are already entangled with each other in a way that separates the "alive" and "dead" states--each of them is really one of two terms in an incredibly complicated entangled state involving all of the cat's degrees of freedom.
And given all that, any extra entanglement with degrees of freedom in an "environment" outside the cat is trivial, and thinking of the cat as only being decohered into "alive" or "dead" states by becoming entangled with an "environment" outside the cat is wrong. All of the decoherence has already happened long before any degrees of freedom outside the cat become involved.
jlcd said:those definitions depend on being able to separate the system into the two disjoint subsystems "cat" and "cat's environment".
Yes, that's true.
jlcd said:That is what we don't know how to do in the general case using just the information in the overall system's wave function.
Yes, that's true in the general case. But I think it's quite possible that in any special case of actual practical interest--like a cat or a human or even a table or a rock--separating out the objects of interest as systems can be done to a good enough approximation. The cases where the split is not sufficiently clear might just be edge cases that don't need to be dealt with in practice.
jlcd said:Isn't "alive" and "dead" really orthogonal quantum states of the cat.
No. They are orthogonal subspaces of the state space of the cat, as I said. Neither one is a single state or anything close to it, since the cat has so many degrees of freedom that there are a huge number of microstates it can have that are equivalent from the standpoint of it being alive or dead.
jlcd said:Or is the truth we really don't know if alive and dead are orthogonal quantum states of the cat or classical state space due to lack of information?
The "classical state space" is just a coarse-graining of the quantum state space--basically you ignore interference between decohered alternatives. It's not something separate. So the distinction you are trying to make here doesn't really exist.