I'm familiar with the classification of fixed points of linear dynamical systems in two dimensions; it's readily available in many a book, as well as good ol' Wiki (http://en.wikipedia.org/wiki/Linear_dynamical_system#Classification_in_two_dimensions).(adsbygoogle = window.adsbygoogle || []).push({});

However, what happens with higher-order systems, say, three-dimensional? In that case, you'll end up having three eigenvalues -- presumably, different combinations of their signs give rise to different fixed point types. Has this been investigated? I've looked at numerous books, and all I ever seem to find is classification for two dimensions.

Any help with finding a book/paper/URL dealing with this would be much appreciated!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Classification of fixed points of N-dimensional linear dynamical system?

Loading...

Similar Threads for Classification fixed points |
---|

I Classification of First Order Linear Partial Differential Eq |

**Physics Forums | Science Articles, Homework Help, Discussion**